斯坦福的專家在人工智能報告中得出的結論:"越來越強大的人工智能應用,可能會對我們的社會和經濟產生深遠的積極影響,這將出現在從現在到2030年的時間段裡。"
以下這些開源人工智能應用都處於人工智能研究的最前沿。
1.Caffe
它是由賈揚清在加州大學伯克利分校的讀博時創造的,Caffe是一個基於表達體系結構和可擴展代碼的深度學習框架。使它聲名鵲起的是它的速度,這讓它受到研究人員和企業用戶的歡迎。根據其網站所言,它可以在一天之內只用一個NVIDIA K40 GPU處理6000萬多個圖像。它是由伯克利視野和學習中心(BVLC)管理的,並且由NVIDIA和亞馬遜等公司資助來支持它的發展。
2.CNTK
它是計算機網絡工具包(Computational Network Tookit)的縮寫,CNTK是一個微軟的開源人工智能工具。不論是在單個CPU、單個GPU、多個GPU或是擁有多個GPU的多臺機器上它都有優異的表現。微軟主要用它做語音識別的研究,但是它在機器翻譯、圖像識別、圖像字幕、文本處理、語言理解和語言建模方面都有著良好的應用。
3.Deeplearning4j
Deeplearning4j是一個java虛擬機(JVM)的開源深度學習庫。它運行在分佈式環境並且集成在Hadoop和Apache Spark中。這使它可以配置深度神經網絡,並且它與Java、Scala和其他JVM語言兼容。
4.DMTK
DMTK分佈式集齊學習工具(Distributed Machine Learning Toolkit)的縮寫,和CNTK一樣,是微軟的開源人工智能工具。作為設計用於大數據的應用程序,它的目標是更快的訓練人工智能系統。它包括三個主要組件:DMTK框架、LightLDA主題模型算法和分佈式(多義)字嵌入算法。為了證明它的速度,微軟聲稱在一個八集群的機器上,它能夠"用100萬個主題和1000萬個單詞的詞彙表(總共10萬億參數)訓練一個主題模型,在一個文檔中收集1000億個符號,"。這一成績是別的工具無法比擬的。
5.H20
相比起科研,H2O更注重將AI服務於企業用戶,因此H2O有著大量的公司客戶,比如第一資本金融公司、思科、Nielsen Catalina、PayPal和泛美都是它的用戶。它聲稱任何人都可以利用機器學習和預測分析的力量來解決業務難題。它可以用於預測建模、風險和欺詐分析、保險分析、廣告技術、醫療保健和客戶情報。
它有兩種開源版本:標準版H2O和Sparking Water版,它被集成在Apache Spark中。也有付費的企業用戶支持。
6.Mahout
它是Apache基金會項目,Mahout是一個開源機器學習框架。根據它的網站所言,它有著三個主要的特性:一個構建可擴展算法的編程環境、像Spark和H2O一樣的預製算法工具和一個叫Samsara的矢量數學實驗環境。使用Mahout的公司有Adobe、埃森哲諮詢公司、Foursquare、英特爾、領英、Twitter、雅虎和其他許多公司。其網站列了出第三方的專業支持。
7.MLlib
由於其速度,Apache Spark成為一個最流行的大數據處理工具。MLlib是Spark的可擴展機器學習庫。它集成了Hadoop並可以與NumPy和R進行交互操作。它包括了許多機器學習算法如分類、迴歸、決策樹、推薦、集群、主題建模、功能轉換、模型評價、ML管道架構、ML持久、生存分析、頻繁項集和序列模式挖掘、分佈式線性代數和統計。
8.NuPIC
由Numenta公司管理的NuPIC是一個基於分層暫時記憶理論的開源人工智能項目。從本質上講,HTM試圖創建一個計算機系統來模仿人類大腦皮層。他們的目標是創造一個"在許多認知任務上接近或者超越人類認知能力"的機器。
除了開源許可,Numenta還提供NuPic的商業許可協議,並且它還提供技術專利的許可證。
9.OpenNN
作為一個為開發者和科研人員設計的具有高級理解力的人工智能,OpenNN是一個實現神經網絡算法的c++編程庫。它的關鍵特性包括深度的架構和快速的性能。其網站上可以查到豐富的文檔,包括一個解釋了神經網絡的基本知識的入門教程
10.OpenCyc
由Cycorp公司開發的OpenCyc提供了對Cyc知識庫的訪問和常識推理引擎。它擁有超過239,000個條目,大約2,093,000個三元組和大約69,000 owl:這是一種類似於鏈接到外部語義庫的命名空間。它在富領域模型、語義數據集成、文本理解、特殊領域的專家系統和遊戲AI中有著良好的應用。該公司還提供另外兩個版本的Cyc:一個可免費的用於科研但是不開源,和一個提供給企業的但是需要付費。
11.Oryx 2
構建在Apache Spark和Kafka之上的Oryx 2是一個專門針對大規模機器學習的應用程序開發框架。它採用一個獨特的三層λ架構。開發者可以使用Orys 2創建新的應用程序,另外它還擁有一些預先構建的應用程序可以用於常見的大數據任務比如協同過濾、分類、迴歸和聚類。大數據工具供應商Cloudera創造了最初的Oryx 1項目並且一直積極參與持續發展。
12.PredictionIO
今年的二月,Salesforce收購了PredictionIO,接著在七月,它將該平臺和商標貢獻給Apache基金會,Apache基金會將其列為孵育計劃。所以當Salesforce利用PredictionIO技術來提升它的機器學習能力時,成效將會同步出現在開源版本中。它可以幫助用戶創建帶有機器學習功能的預測引擎,這可用於部署能夠實時動態查詢的Web服務。
13.SystemML
最初由IBM開發,SystemML現在是一個Apache大數據項目。它提供了一個高度可伸縮的平臺,可以實現高等數學運算,並且它的算法用R或一種類似python的語法寫成。企業已經在使用它來跟蹤汽車維修客戶服務、規劃機場交通和連接社會媒體數據與銀行客戶。它可以在Spark或Hadoop上運行。
14.TensorFlow
TensorFlow是一個谷歌的開源人工智能工具。它提供了一個使用數據流圖進行數值計算的庫。它可以運行在多種不同的有著單或多CPU和GPU的系統,甚至可以在移動設備上運行。它擁有深厚的靈活性、真正的可移植性、自動微分功能,並且支持Python和c++。它的網站擁有十分詳細的教程列表來幫助開發者和研究人員沉浸於使用或擴展他的功能。
15.Torch
Torch將自己描述為:"一個優先使用GPU的擁有機器學習算法廣泛支持的科學計算框架",它的特點是靈活性和速度。此外,它可以很容易的通過軟件包用於機器學習、計算機視覺、信號處理、並行處理、圖像、視頻、音頻和網絡等方面。它依賴一個叫做LuaJIT的腳本語言,而LuaJIT是基於Lua的。
微信公眾號:IT百戰程序員,免費提供人工智能、大數據、雲計算等資料~~不管你在地球哪個方位,歡迎你的關注!
閱讀更多 路人與貓 的文章