MySQL的鎖機制

我們最簡單的例子說起。經常有朋友發給我一個SQL,然後問我,這個SQL加什麼鎖?就如同下面兩條簡單的SQL,他們加什麼鎖?

  • SQL1:select * from t1 where id = 10;
  • SQL2:delete from t1 where id = 10;

針對這個問題?我能想象到的一個結論是:

  • SQL1:不加鎖。因為MySQL是使用多版本併發控制的,讀不加鎖。
  • SQL2:對id = 10的記錄加寫鎖 (走主鍵索引)。

這個對嗎?說不上來。即可能是正確的,也有可能是錯誤的,已知條件不足。如果讓我來回復這個問題,我必須還要知道以下的一些前提,前提不同,結論也就不同。這個問題,還缺少哪些前提條件?

前提一:id列是不是主鍵?

前提二:當前系統的隔離級別是什麼?

前提三:id列如果不是主鍵,那麼id列上有索引嗎?

前提四:id列上如果有二級索引,那麼這個索引是唯一索引嗎?

前提五:兩個SQL的執行計劃是什麼?索引掃描?全表掃描?

沒有這些前提,直接就給定一條SQL,然後問這個SQL會加什麼鎖,都是很業餘的表現。而當這些問題有了明確的之後,給定的SQL會加什麼鎖,也就一目瞭然。下面,我將這些問題進行組合,然後按照從易到難的順序,逐個分析每種組合下,對應的SQL會加哪些鎖?

先來溫習下事物的隔離級別和鎖的知識:

MySQL的鎖機制

共享鎖【S鎖】

又稱讀鎖,若事務T對數據對象A加上S鎖,則事務T可以讀A但不能修改A,其他事務只能再對A加S鎖,而不能加X鎖,直到T釋放A上的S鎖。這保證了其他事務可以讀A,但在T釋放A上的S鎖之前不能對A做任何修改。

排他鎖【X鎖】

又稱寫鎖。若事務T對數據對象A加上X鎖,事務T可以讀A也可以修改A,其他事務不能再對A加任何鎖,直到T釋放A上的鎖。這保證了其他事務在T釋放A上的鎖之前不能再讀取和修改A。

下面的這些組合,我做了一個前提假設,也就是有索引時,執行計劃一定會選擇使用索引進行過濾 (索引掃描)。但實際情況會複雜很多,真正的執行計劃,還是需要根據MySQL輸出的為準。

  • 組合一:id列是主鍵,RC隔離級別
  • 組合二:id列是二級唯一索引,RC隔離級別
  • 組合三:id列是二級非唯一索引,RC隔離級別
  • 組合四:id列上沒有索引,RC隔離級別
  • 組合五:id列是主鍵,RR隔離級別
  • 組合六:id列是二級唯一索引,RR隔離級別
  • 組合七:id列是二級非唯一索引,RR隔離級別
  • 組合八:id列上沒有索引,RR隔離級別
  • 組合九:Serializable隔離級別

排列組合還沒有列舉完全,但是看起來,已經很多了。真的有必要這麼複雜嗎?事實上,要分析加鎖,就是需要這麼複雜。但是從另一個角度來說,只要你選定了一種組合,SQL需要加哪些鎖,其實也就確定了。接下來,就讓我們來逐個分析這9種組合下的SQL加鎖策略。

注:在前面八種組合下,也就是RC,RR隔離級別下,SQL1:select操作均不加鎖,採用的是快照讀,因此在下面的討論中就忽略了,主要討論SQL2:delete操作的加鎖。

組合一:id主鍵+RC(Read-Committed級別)

  • 結論:id是主鍵時,此SQL只需要在id=10這條記錄上加X鎖即可。

組合二:id唯一索引+RC

  • 這個組合,id不是主鍵,而是一個Unique的二級索引鍵值。那麼在RC隔離級別下,delete from t1 where id = 10; 需要加什麼鎖呢?見下圖:
MySQL的鎖機制

此組合中,id是unique索引,而主鍵是name列。此時,加鎖的情況由於組合一有所不同。由於id是unique索引,因此delete語句會選擇走id列的索引進行where條件的過濾,在找到id=10的記錄後,首先會將unique索引上的id=10索引記錄加上X鎖。

同時,會根據讀取到的name列,回主鍵索引(聚簇索引),然後將聚簇索引上的name = ‘d’ 對應的主鍵索引項加X鎖。為什麼聚簇索引上的記錄也要加鎖?試想一下,如果併發的一個SQL,是通過主鍵索引來更新:update t1 set id = 100 where name = ‘d';

此時,如果delete語句沒有將主鍵索引上的記錄加鎖,那麼併發的update就會感知不到delete語句的存在,違背了同一記錄上的更新/刪除需要串行執行的約束。

結論:若id列是unique列,其上有unique索引。那麼SQL需要加兩個X鎖,一個對應於id unique索引上的id = 10的記錄,另一把鎖對應於聚簇索引上的[name=’d’,id=10]的記錄。

這個組合,是最簡單,最容易分析的組合。id是主鍵,Read Committed隔離級別,給定SQL:delete from t1 where id = 10; 只需要將主鍵上,id = 10的記錄加上X鎖即可。如下圖所示:

MySQL的鎖機制

組合三:id非唯一索引+RC

相對於組合一、二,組合三又發生了變化,隔離級別仍舊是RC不變,但是id列上的約束又降低了,id列不再唯一,只有一個普通的索引。假設delete from t1 where id = 10; 語句,仍舊選擇id列上的索引進行過濾where條件,那麼此時會持有哪些鎖?同樣見下圖:

MySQL的鎖機制

根據此圖,可以看到,首先,id列索引上,滿足id = 10查詢條件的記錄,均已加鎖。同時,這些記錄對應的主鍵索引上的記錄也都加上了鎖。與組合二唯一的區別在於,組合二最多隻有一個滿足等值查詢的記錄,而組合三會將所有滿足查詢條件的記錄都加鎖。

結論:若id列上有非唯一索引,那麼對應的所有滿足SQL查詢條件的記錄,都會被加鎖。同時,這些記錄在主鍵索引上的記錄,也會被加鎖。

組合四:id無索引+RC

相對於前面三個組合,這是一個比較特殊的情況。id列上沒有索引,where id = 10;這個過濾條件,沒法通過索引進行過濾,那麼只能走全表掃描做過濾。對應於這個組合,SQL會加什麼鎖?或者是換句話說,全表掃描時,會加什麼鎖?這個也有很多:有人說會在表上加X鎖;有人說會將聚簇索引上,選擇出來的id = 10;的記錄加上X鎖。那麼實際情況呢?請看下圖:

MySQL的鎖機制

由於id列上沒有索引,因此只能走聚簇索引,進行全部掃描。從圖中可以看到,滿足刪除條件的記錄有兩條,但是,聚簇索引上所有的記錄,都被加上了X鎖。無論記錄是否滿足條件,全部被加上X鎖。既不是加表鎖,也不是在滿足條件的記錄上加行鎖。

有人可能會問?為什麼不是隻在滿足條件的記錄上加鎖呢?這是由於MySQL的實現決定的。如果一個條件無法通過索引快速過濾,那麼存儲引擎層面就會將所有記錄加鎖後返回,然後由MySQL Server層進行過濾。因此也就把所有的記錄,都鎖上了。

注:在實際的實現中,MySQL有一些改進,在MySQL Server過濾條件,發現不滿足後,會調用unlock_row方法,把不滿足條件的記錄放鎖 (違背了2PL的約束)。這樣做,保證了最後只會持有滿足條件記錄上的鎖,但是每條記錄的加鎖操作還是不能省略的。

結論:若id列上沒有索引,SQL會走聚簇索引的全掃描進行過濾,由於過濾是由MySQL Server層面進行的。因此每條記錄,無論是否滿足條件,都會被加上X鎖。但是,為了效率考量,MySQL做了優化,對於不滿足條件的記錄,會在判斷後放鎖,最終持有的,是滿足條件的記錄上的鎖,但是不滿足條件的記錄上的加鎖/放鎖動作不會省略。同時,優化也違背了2PL的約束。

組合五:id主鍵+RR

上面的四個組合,都是在Read Committed隔離級別下的加鎖行為,接下來的四個組合,是在Repeatable Read隔離級別下的加鎖行為。

組合五,id列是主鍵列,Repeatable Read隔離級別,針對delete from t1 where id = 10; 這條SQL,加鎖與組合一:[id主鍵,Read Committed]一致。

組合六:id唯一索引+RR

與組合五類似,組合六的加鎖,與組合二:[id唯一索引,Read Committed]一致。兩個X鎖,id唯一索引滿足條件的記錄上一個,對應的聚簇索引上的記錄一個。

組合七:id非唯一索引+RR

RC隔離級別允許幻讀,而RR隔離級別,不允許存在幻讀。但是在組合五、組合六中,加鎖行為又是與RC下的加鎖行為完全一致。那麼RR隔離級別下,如何防止幻讀呢?就在組合七中揭曉。

組合七,Repeatable Read隔離級別,id上有一個非唯一索引,執行delete from t1 where id = 10; 假設選擇id列上的索引進行條件過濾,最後的加鎖行為,是怎麼樣的呢?同樣看下面這幅圖:

MySQL的鎖機制

此圖,相對於組合三:[id列上非唯一鎖,Read Committed]看似相同,其實卻有很大的區別。最大的區別在於,這幅圖中多了一個GAP鎖,而且GAP鎖看起來也不是加在記錄上的,倒像是加載兩條記錄之間的位置,GAP鎖有何用?

其實這個多出來的GAP鎖,就是RR隔離級別,相對於RC隔離級別,不會出現幻讀的關鍵。確實,GAP鎖鎖住的位置,也不是記錄本身,而是兩條記錄之間的GAP。所謂幻讀,就是同一個事務,連續做兩次當前讀 (例如:select * from t1 where id = 10 for update;),那麼這兩次當前讀返回的是完全相同的記錄 (記錄數量一致,記錄本身也一致),第二次的當前讀,不會比第一次返回更多的記錄 (幻象)。

如何保證兩次當前讀返回一致的記錄,那就需要在第一次當前讀與第二次當前讀之間,其他的事務不會插入新的滿足條件的記錄並提交。為了實現這個功能,GAP鎖應運而生。

如圖中所示,有哪些位置可以插入新的滿足條件的項 (id = 10),考慮到B+樹索引的有序性,滿足條件的項一定是連續存放的。記錄[6,c]之前,不會插入id=10的記錄;[6,c]與[10,b]間可以插入[10, aa];[10,b]與[10,d]間,可以插入新的[10,bb],[10,c]等;[10,d]與[11,f]間可以插入滿足條件的[10,e],[10,z]等;而[11,f]之後也不會插入滿足條件的記錄。因此,為了保證[6,c]與[10,b]間,[10,b]與[10,d]間,[10,d]與[11,f]不會插入新的滿足條件的記錄,MySQL選擇了用GAP鎖,將這三個GAP給鎖起來。

Insert操作,如insert [10,aa],首先會定位到[6,c]與[10,b]間,然後在插入前,會檢查這個GAP是否已經被鎖上,如果被鎖上,則Insert不能插入記錄。因此,通過第一遍的當前讀,不僅將滿足條件的記錄鎖上 (X鎖),與組合三類似。同時還是增加3把GAP鎖,將可能插入滿足條件記錄的3個GAP給鎖上,保證後續的Insert不能插入新的id=10的記錄,也就杜絕了同一事務的第二次當前讀,出現幻象的情況。

有心的朋友看到這兒,可以會問:既然防止幻讀,需要靠GAP鎖的保護,為什麼組合五、組合六,也是RR隔離級別,卻不需要加GAP鎖呢?

首先,這是一個好問題。其次,這個問題,也很簡單。GAP鎖的目的,是為了防止同一事務的兩次當前讀,出現幻讀的情況。而組合五,id是主鍵;組合六,id是unique鍵,都能夠保證唯一性。一個等值查詢,最多隻能返回一條記錄,而且新的相同取值的記錄,一定不會在新插入進來,因此也就避免了GAP鎖的使用。其實,針對此問題,還有一個更深入的問題:如果組合五、組合六下,針對SQL:select * from t1 where id = 10 for update; 第一次查詢,沒有找到滿足查詢條件的記錄,那麼GAP鎖是否還能夠省略?此問題留給大家思考。

結論:Repeatable Read隔離級別下,id列上有一個非唯一索引,對應SQL:delete from t1 where id = 10; 首先,通過id索引定位到第一條滿足查詢條件的記錄,加記錄上的X鎖,加GAP上的GAP鎖,然後加主鍵聚簇索引上的記錄X鎖,然後返回;然後讀取下一條,重複進行。直至進行到第一條不滿足條件的記錄[11,f],此時,不需要加記錄X鎖,但是仍舊需要加GAP鎖,最後返回結束。

組合八:id無索引+RR

組合八,Repeatable Read隔離級別下的最後一種情況,id列上沒有索引。此時SQL:delete from t1 where id = 10; 沒有其他的路徑可以選擇,只能進行全表掃描。最終的加鎖情況,如下圖所示:

MySQL的鎖機制

如圖,這是一個很恐怖的現象。首先,聚簇索引上的所有記錄,都被加上了X鎖。其次,聚簇索引每條記錄間的間隙(GAP),也同時被加上了GAP鎖。這個示例表,只有6條記錄,一共需要6個記錄鎖,7個GAP鎖。試想,如果表上有1000萬條記錄呢?

在這種情況下,這個表上,除了不加鎖的快照度,其他任何加鎖的併發SQL,均不能執行,不能更新,不能刪除,不能插入,全表被鎖死。

當然,跟組合四:[id無索引, Read Committed]類似,這個情況下,MySQL也做了一些優化,就是所謂的semi-consistent read。semi-consistent read開啟的情況下,對於不滿足查詢條件的記錄,MySQL會提前放鎖。針對上面的這個用例,就是除了記錄[d,10],[g,10]之外,所有的記錄鎖都會被釋放,同時不加GAP鎖。semi-consistent read如何觸發:要麼是read committed隔離級別;要麼是Repeatable Read隔離級別,同時設置了innodb_locks_unsafe_for_binlog 參數。

結論:在Repeatable Read隔離級別下,如果進行全表掃描的當前讀,那麼會鎖上表中的所有記錄,同時會鎖上聚簇索引內的所有GAP,杜絕所有的併發 更新/刪除/插入 操作。當然,也可以通過觸發semi-consistent read,來緩解加鎖開銷與併發影響,但是semi-consistent read本身也會帶來其他問題,不建議使用。

組合九:Serializable

針對前面提到的簡單的SQL,最後一個情況:Serializable隔離級別。對於SQL2:delete from t1 where id = 10; 來說,Serializable隔離級別與Repeatable Read隔離級別完全一致,因此不做介紹。

Serializable隔離級別,影響的是SQL1:select * from t1 where id = 10; 這條SQL,在RC,RR隔離級別下,都是快照讀,不加鎖。但是在Serializable隔離級別,SQL1會加讀鎖,也就是說快照讀不復存在,MVCC併發控制降級為Lock-Based CC。

結論:在MySQL/InnoDB中,所謂的讀不加鎖,並不適用於所有的情況,而是隔離級別相關的。Serializable隔離級別,讀不加鎖就不再成立,所有的讀操作,都是當前讀。

一條複雜的SQL

寫到這裡,其實MySQL的加鎖實現也已經介紹的八八九九。只要將本文上面的分析思路,大部分的SQL,都能分析出其會加哪些鎖。而這裡,再來看一個稍微複雜點的SQL,用於說明MySQL加鎖的另外一個邏輯。SQL用例如下:

MySQL的鎖機制

如圖中的SQL,會加什麼鎖?假定在Repeatable Read隔離級別下 (Read Committed隔離級別下的加鎖情況,留給讀者分析。),同時,假設SQL走的是idx_t1_pu索引。

在詳細分析這條SQL的加鎖情況前,還需要有一個知識儲備,那就是一個SQL中的where條件如何拆分?具體的介紹,建議閱讀我之前的一篇文章:SQL中的where條件,在數據庫中提取與應用淺析 。在這裡,我直接給出分析後的結果:

  • Index key:pubtime > 1 and puptime < 20。此條件,用於確定SQL在idx_t1_pu索引上的查詢範圍。
  • Index Filter:userid = ‘hdc’ 。此條件,可以在idx_t1_pu索引上進行過濾,但不屬於Index Key。
  • Table Filter:comment is not NULL。此條件,在idx_t1_pu索引上無法過濾,只能在聚簇索引上過濾。

在分析出SQL where條件的構成之後,再來看看這條SQL的加鎖情況 (RR隔離級別),如下圖所示:

MySQL的鎖機制

從圖中可以看出,在Repeatable Read隔離級別下,由Index Key所確定的範圍,被加上了GAP鎖;Index Filter鎖給定的條件 (userid = ‘hdc’)何時過濾,視MySQL的版本而定,在MySQL 5.6版本之前,不支持Index Condition Pushdown(ICP),因此Index Filter在MySQL Server層過濾,在5.6後支持了Index Condition Pushdown,則在index上過濾。若不支持ICP,不滿足Index Filter的記錄,也需要加上記錄X鎖,若支持ICP,則不滿足Index Filter的記錄,無需加記錄X鎖 (圖中,用紅色箭頭標出的X鎖,是否要加,視是否支持ICP而定);而Table Filter對應的過濾條件,則在聚簇索引中讀取後,在MySQL Server層面過濾,因此聚簇索引上也需要X鎖。最後,選取出了一條滿足條件的記錄[8,hdc,d,5,good],但是加鎖的數量,要遠遠大於滿足條件的記錄數量。

結論:在Repeatable Read隔離級別下,針對一個複雜的SQL,首先需要提取其where條件。Index Key確定的範圍,需要加上GAP鎖;Index Filter過濾條件,視MySQL版本是否支持ICP,若支持ICP,則不滿足Index Filter的記錄,不加X鎖,否則需要X鎖;Table Filter過濾條件,無論是否滿足,都需要加X鎖。


分享到:


相關文章: