问高手:现代数学发展到了什么阶段?


一个数学大王的重大发现,用孪生素数证明哥德巴赫猜想成立。

经常用了

9月12日 · 单县红十字会会员 军事领域创作者

陈景润的哥德巴赫猜想固然历害。你想看到一个比陈景运更加历害的哥德巴赫猜想吗。欧拉复信哥德巴赫,任何一个大于2的偶数都可以表为两个素数的和,我虽然不能证明它,但我确信它是确定无疑的定理。这就是著明的哥德巴赫猜想。在世界数学历史的長河中,对于无限的概念就是从理论上来证明是无限的被认为是终极和完成的。例如,哥德巴赫猜想,现已计算到人类现己应用的最大数是成立的,但仍然认为是不行的。此外还有黎曼猜想,费马大定理。。。。。。,而不能进入实质上的应用。在这里要说的是,素数之所以被称为自然数的基石,是因为用素数的和,可以组成一切自然数。亲爱的读者,当你看了下面的论文后,对我以上所说有什么感想呢。

一个数学大王与数学牛人重大发现

用孪生素数证明哥德巴赫猜想成立

(引入原文)孪生素数公式

什么是孪生素数,孪生质数有一个十分精确的普遍公式,是根据一个定理:“若自然数Q与Q+2都不能被不大于根号Q+2的任何质数整除,则Q与Q+2是一对质数,称为相差2的孪生质数。这一句话可以用公式表达:Q=p1m1+a1=p2m2+a2=....=pkmk+ak其中p1,p2,...,pk表示顺序质数2,3,5,....。an≠0,an≠pn-2。若Q

在这里,首先要对孪生素数作出新的定义,而不是(若自然数Q与Q+2都不能被不大于根号Q+2的任何质数整除,则Q与Q+2是一对质数,称为相差2的孪生质数。)则是沿用我国古代的《奇门遁甲》中的“三奇就在已丙丁”,把孪生素数分成以下几种类形:

(1).两孪生素数,:例如3和5 ,5和7,11和13,…,

(2).三孪生素数,例如41.43.和47 ,461.463.和467,613.和617.619,…,

(3)四孪生素数,例如11.13.和17.19 ,101.103.和107.109,821.823.和827.829,…,,

(4)头孪生素数,例如a1087.1089a1091a,a1867a1871 1873p.1877 1879a ,a7207 a7211 7213a,…,

(5)尾孪生素数,例如a1607 1609a1613a,a2657 2659a2663a,a8861 8863a 8867a a8969 8971a ,…

(6)头尾孪生素数,例如a1087 a1091 1093a 1097a

,a1423a1427.1429a1433a,a1297 a1301 1303a 1307a,…,,

现将以上六种孪生素数简称头尾孪生素数,记作:“m”孪生素数。原定义孪生素数记作“q”孪生素数。

按照以上两种定义,将10000以内二孪生、三孪生、四孪生、五孪生、六孪生素数哥猜相加和数进行列表如下:

(部分)

10…10=5q5.12=7q5.14=7q7.16=11q5.18=11q7.20=13q7.

22=11q11.24=11w13.26=13q13.28=17q11.3

1000.1000=569q431.1002=569q433.1004=571q433.1006=857q149.

1008=857q151.1010=829q181.1012=821q191.1014=191q823.

1016=193q823.1018=419q599.1020=1019q1.1022.=1021q1.

1024=1021q3.1026=1021q5.1028=1021q7.1030=853q277.

1032=1031q1.1034=1033q1.1036=1033q3.1038=1033q5. pppp

1040=1033q7.1042=521q321.1044=033q11.1146=433q613.

1048=857q191.1050=1033q17.1052=1033q19.1054=857q197.

1056=857q199.1058=601q457.1060=1049q11.1062=1033q29.

1064=1033q31.1066=467q599.1068=467q601.1070=457q613.

1072=431q641.1074=1033q41.1076

9148=137q9011.9150=137q9013.9152=139q9013.9154=113m9041.

9156=113m9043.9158=619q8539.9160=149q9011.9162=149q9013.

9164=151q9013.9166=197q8969.9168=197q8971.917








经常用了


现代数学发展到了什么阶段?我们列出现代数学时期(公元 19 世纪 70 年代—— )发展的内容节点:

1. 康托的“集合论”

2. 柯西、魏尔斯特拉斯等人的“数学分析”

3. 希尔伯特的“公理化体系”

4. 高斯、罗巴契夫斯基、波约尔、黎曼的“非欧几何”

5. 伽罗瓦创立的“抽象代数”

6. 黎曼开创的“现代微分几何”

7. 其它:数论、拓扑学、随机过程、数理逻辑、组合数学、分形与混沌 等等

具体叙述如下,期待你的点评。

一.19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。

大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。

后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。

1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。

在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。

另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。

二.分析的算术化

1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。

现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。

19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。

三.拓扑学开始是几何学的一个分支

但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。

20世纪有许多数学著作曾致力于仔细考查数学的逻辑基础和结构,这反过来导致公理学的产生,即对于公设集合及其性质的研究。许多数学概念经受了重大的变革和推广,并且像集合论、近世代数学和拓扑学这样深奥的基础学科也得到广泛发展。一般(或抽象)集合论导致的一些意义深远而困扰人们的悖论,迫切需要得到处理。逻辑本身作为在数学上以承认的前提去得出结论的工具,被认真地检查,从而产生了数理逻辑。逻辑与哲学的多种关系,导致数学哲学的各种不同学派的出现。

四.20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。

为了减少浪费和避免盲目性,迫切需要精确的理论分机和设计。再次是现代科学技术日益趋向定量化,各个科学技术领域,都需要使用数学工具。数学几乎渗透到所有的科学部门中去,从而形成了许多边缘数学学科,例如生物数学、生物统计学、数理生物学、数理语言学等等。

上述情况使得数学发展呈现出一些比较明显的特点,可以简单地归纳为三个方面:计算机科学的形成,应用数学出现众多的新分支、纯粹数学有若干重大的突破。

20世纪40年代以后,涌现出了大量新的应用数学科目,内容的丰富、应用的广泛、名目的繁多都是史无前例的。例如对策论、规划论、排队论、最优化方法、运筹学、信息论、控制论、系统分析、可靠性理论等。例如数学家们更多地借助计算机研究纯粹数学,这方面突出的例子是孤立子(soliton)和混沌(chaos)的发现,它们是非线性科学的核心问题,可谓两朵美丽的“数学物理之花”。

20世纪40年代以后,基础理论也有了飞速的发展,出现许多突破性的工作,解决了一些带根本性质的问题。在这过程中引入了新的概念、新的方法,推动了整个数学前进。例如,希尔伯特1990年在国际教学家大会上提出的尚待解决的23个问题中,有些问题得到了解决。60年代以来,还出现了如非标准分析、模糊数学、突变理论等新兴的数学分支。此外,近几十年来经典数学也获得了巨大进展,如概率论、数理统计、解析数论、微分几何、代数几何、微分方程、因数论、泛函分析、数理逻辑等等。


中学数学深度研究


实变函数学十遍,泛函分析心犯寒。。。这个只是数学专业本科的难度而已。

前沿的就根本是无数个分支,每个小圈子整个世界也许就那么几十人几百人,分分钟失传招不到足够的学生当老师,一个几何教授完全不懂另一个拓扑教授讲什么这再正常不过。



第一周目我妻由乃



四元数:150年后在计算机时代盛开

1843年10月16日,爱尔兰数学家汉密尔顿爵士(William Hamilton)在散步时,突然想到了i²=j²=k²=ijk=-1 的方程解,并且创造了形如 a+bi+cj+dk 的四元数(a为标量,[bi + cj + dk]为矢量)。为了捕捉这一思想火花,汉密尔顿爵士顾不得保护文物,将方程刻在了正好经过的布鲁穆桥上。

这条方程放弃了交换律,是当时一个极端的想法(那时还未发展出矢量和矩阵)。四元数是复数的不可交换延伸。如把四元数的集合考虑成多维实数空间的话,四元数就代表着一个四维空间。汉密尔顿爵士本来正在研究如何把复数应用于三维空间,但桥上的灵光一现,直接把研究扩展到了四维上去。

四元数有着漂亮的数学形式,还适用于地理学、力学和光学的研究。之后的时间里,汉密尔顿爵士把大部分精力都用于推广四元数的概念。他死后,接力棒传到了爱丁堡大学自然哲学教授皮特·格恩里·泰特手中。

著名物理学家威廉·汤姆逊(也称“开尔文男爵”,热力学温标单位开尔文便以他的名字命名)曾说:我和泰特为四元数争了38年。两人合著《自然哲学论》( Treatise on Natural Philosophy )时,曾决定在必要时引入四元数的概念,但从最终手稿来看,“必要的时候”一直不曾出现。

19世纪末,向量微积分的出现更是抢走了四元数的光芒。在20世纪中叶的科学和工程界中,矢量几乎已完全取代四元数的位置。麦克斯韦曾在他的《电磁场动力理论》直接以20条有20个变量的微分方程组来解释电力、磁力和电磁场之间的关系。

某些早期的麦克斯韦方程组使用了四元数来表述,但与后来黑维塞使用4条以矢量为基础的麦克斯韦方程组表述相比较,使用四元数的表述并没有流行起来。人们认为四元数空有漂亮的数学结构,没有什么实际用途,不过是数学史上又一个无足轻重的脚注罢了。

到了计算机时代,四元数终于找到了自己的位置。在三维几何旋转的计算中比矩阵更有优势,在机器人技术、计算机视觉和图像编程领域都是极为重要的工具。

150年之后,汉密尔顿爵士他们的研究终于得到了世人认可。自己种下的理论滋养了全球数以千亿计的计算机产业,爵爷若地下有知,也应该感到欣慰了。

最密堆积:3个世纪后在信道中相遇

假如在你面前放着一堆橙子,怎么摆放才能最节约空间?

别以为这只是困扰水果店老板的日常烦恼之一。虽然任何人都可以凭经验或直觉断定,把上一层橙子交错着放到下一层橙子彼此相邻的凹处,显然要比直接一个叠一个的摆放更合理。但谁能从数学上证明,的确不存在比这更合理的方法呢?

1611年,开普勒提出,水果商堆橙子的办法对空间的利用率最高,可他自己却没法给出证明。在400多年的时间里,“开普勒猜想”(Kepler's Conjecture)难倒了众多数学家。直到1940年,匈牙利数学家拉兹洛·费耶·托斯才解决了开普勒猜想的简化版——圆环堆积问题。

1998年,一则数学新闻突然成了各大媒体报道的焦点:美国匹兹堡大学的托马斯·海尔斯(Thomas C. Hales)证明了“开普勒猜想”:在箱子里堆放大小一样的球,用“面心立方体”的堆积方式(即上层圆球安放在下一层圆球中间的各个凹处)可以使空间利用率最高。也就是说,水果商在箱子里装橙子的办法一直都是最有效的。

海尔斯解答了这个提出了400余年的难题,但水果商并不买账。一位水果摊小贩在接受电视台采访时说:“这简直是浪费时间又浪费我们纳税人的钱!”

不过,开普勒和海尔斯的智慧结晶当然不仅仅是用来装橙子这么简单——有关最密堆积的研究成果是现代通讯技术的重要工具,是信道编码和纠错编码研究的核心内容。

同样也是在17世纪,牛顿和大卫·格里高里因“牛顿数问题”争来争去。牛顿数,“Kissing Number”,是与一个n维球外切的等维球的个数。很容易看出,二维的牛顿数是6(上图左)。牛顿确信三维的牛顿数是12,直到1953年,科特·舒特和范·德·维尔登才给出了一个证明。

2003年,奥莱格·穆辛证明了4维的牛顿数是24。至于5维的牛顿数,目前只知道它在40到44之间。不过,我们知道8维的牛顿数是240,24维的牛顿数是196560,这两个数都是美国明尼苏达大学的安德鲁·奥德里兹克在1979年证明的。8维和24维的牛顿数证明起来其实比三维的牛顿数简单,它们还跟超密集的球体填充问题有关:8维E8点阵和24维Leech点阵。

这些发现令人惊奇,不过让普通人一头雾水的概念有什么实际意义?接下来听我说。

20世纪60年代,一位叫戈登·朗的工程师正在设计调制解调器系统。他需要从一个繁忙的频道(例如一个电话线)发出一个信号,信号由一系列的音调组成。但是,由于一个频道传递的信号过多,经常出现信号无法被完整接收的情况。朗将组成信号的声音用一串数字表示,信号即可被当作一个个包含信息的“小球”,为了使发送的信息量达到最大化,这些“小球”必须被尽可能紧密的排列起来。

20世纪70年代晚期,朗发明了采用E8堆积法传递8维信号的调制解调器。由于这项技术可以通过电话线进行信号传播,不必重新设计信号电缆,因此大大加快了互联网的发展。

概率论:从赌桌上的硬道理到保险业的发展

文艺复兴时期,意大利出现了一位大学者,卡尔达诺(Girilamo Cardano),他精通数学、物理、占星,在当时被称作百科全书式的学者。卡尔达诺嗜赌,但赌术却并不高明,在赌桌上输掉了大把的家产。不过,他由此写下《论赌博游戏》一书。此书于1663年出版,被认为是第一部概率论专著,开创了现代概率论研究的先河,也为今天的精算学做了铺垫。

一个世纪之后,法国赌徒梅内(Chevalier de Méré)遇到了难题。他常玩的两个游戏,一个是连续掷4次色子,看能否扔出一个6;一个是掷两个色子,连续24次,看能否扔出2个色子都是6的情况。梅内以为两者赢钱的概率相等,不过实际情况却与他想的不一样。玩第一个游戏他赢多输少,第二个游戏却是输多赢少。

梅内向朋友,数学家帕斯卡求助,帕斯卡随后在1654年和费马在信件往来中探讨了这个问题,为概率论的发展打下了基础。1657年,荷兰人惠更斯发表了《论赌博中的计算》,这也是第一部公开发表的概率论著作。

17世纪晚期,雅各布·伯努利发现,随机掷一次色子,每个数字出现的概率都是1/6,但连续掷6次色子并不能确保每个数字都出现。在卡尔达诺研究的基础上,他提出了伯努利实验。n重伯努利试验(也称伯努利概型)常用来讨论n次重复试验中某事件发生的次数及其概率。由于样本点不一定是等概率的,许多实际问题都可归结为这种模型。

更重要的是,伯努利还提出了大数定律,指在一个随机事件中,随着试验次数的增加,事件发生的频率越趋近于一个稳定值。这个定律甚至促进了保险业的发展。

过去,保险公司只敢卖出有限的保单,因为卖出的保单越多,赔付的风险看上去就越高,保险公司担心卖出过多的保单会使公司不堪重负而垮掉。直到18世纪初,保险公司才开始像现在一样大肆推销保险。这都多亏伯努利的大数定理证明:保单卖得越多,赔付的概率就越趋于稳定,风险是可控的。

这种情况还有很多很多,所以有时候人们经常问,证明某个猜想比如哥德巴赫猜想,黎曼猜想真的那么重要吗?其实,这个猜想本身也许不重要,但在证明这个猜想的过程中数学理论的进步,数学工具的发现,也许在将来的某一天会对这个社会的发展有着巨大的推动作用。


分享到:


相關文章: