年终福利!史上最全面的「人工智能发展史」梳理

繁荣:1980 – 1987

在80年代,一类名为“专家系统”的AI程序开始为全世界的公司所采纳,而“知识处理”成为了主流AI研究的焦点。日本政府在同一年代积极投资AI以促进其第五代计算机工程。80年代早期另一个令人振奋的事件是John Hopfield和David Rumelhart使联结主义重获新生。AI再一次获得了成功。

专家系统获得赏识

专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。最早的示例由Edward Feigenbaum和他的学生们开发。1965年起设计的Dendral能够根据分光计读数分辨混合物。1972年设计的MYCIN能够诊断血液传染病。它们展示了这一方法的威力。

专家系统仅限于一个很小的知识领域,从而避免了常识问题;其简单的设计又使它能够较为容易地编程实现或修改。总之,实践证明了这类程序的实用性。直到现在AI才开始变得实用起来。

1980年CMU为DEC(Digital Equipment Corporation,数字设备公司)设计了一个名为XCON的专家系统,这是一个巨大的成功。在1986年之前,它每年为公司省下四千万美元。全世界的公司都开始研发和应用专家系统,到1985年它们已在AI上投入十亿美元以上,大部分用于公司内设的AI部门。为之提供支持的产业应运而生,其中包括Symbolics,Lisp Machines等硬件公司和IntelliCorp,Aion等软件公司。

知识革命

专家系统的能力来自于它们存储的专业知识。这是70年代以来AI研究的一个新方向。 Pamela McCorduck在书中写道,“不情愿的AI研究者们开始怀疑,因为它违背了科学研究中对最简化的追求。智能可能需要建立在对分门别类的大量知识的多种处理方法之上。” “70年代的教训是智能行为与知识处理关系非常密切。有时还需要在特定任务领域非常细致的知识。” 知识库系统和知识工程成为了80年代AI研究的主要方向。

第一个试图解决常识问题的程序Cyc也在80年代出现,其方法是建立一个容纳一个普通人知道的所有常识的巨型数据库。发起和领导这一项目的Douglas Lenat认为别无捷径,让机器理解人类概念的唯一方法是一个一个地教会它们。这一工程几十年也没有完成。

重获拨款:第五代工程

1981年,日本经济产业省拨款八亿五千万美元支持第五代计算机项目。其目标是造出能够与人对话,翻译语言,解释图像,并且像人一样推理的机器。令“芜杂派”不满的是,他们选用Prolog作为该项目的主要编程语言。

其他国家纷纷作出响应。英国开始了耗资三亿五千万英镑的Alvey工程。美国一个企业协会组织了MCC(Microelectronics and Computer Technology Corporation,微电子与计算机技术集团),向AI和信息技术的大规模项目提供资助。 DARPA也行动起来,组织了战略计算促进会(Strategic Computing Initiative),其1988年向AI的投资是1984年的三倍。

联结主义的重生

1982年,物理学家John Hopfield证明一种新型的神经网络(现被称为“Hopfield网络”)能够用一种全新的方式学习和处理信息。大约在同时(早于Paul Werbos),David Rumelhart推广了“反传法(en:Backpropagation)”,一种神经网络训练方法。这些发现使1970年以来一直遭人遗弃的联结主义重获新生。

年终福利!史上最全面的「人工智能发展史」梳理

一个四节点的Hopfield网络.

1986年由Rumelhart和心理学家James McClelland主编的两卷本论文集“分布式并行处理”问世,这一新领域从此得到了统一和促进。90年代神经网络获得了商业上的成功,它们被应用于光字符识别和语音识别软件。

第二次AI低谷:1987 – 1993

80年代中商业机构对AI的追捧与冷落符合经济泡沫的经典模式,泡沫的破裂也在政府机构和投资者对AI的观察之中。尽管遇到各种批评,这一领域仍在不断前进。来自机器人学这一相关研究领域的Rodney Brooks和Hans Moravec提出了一种全新的人工智能方案。

AI之冬

“AI之冬(en:AI winter)”一词由经历过1974年经费削减的研究者们创造出来。他们注意到了对专家系统的狂热追捧,预计不久后人们将转向失望。事实被他们不幸言中:从80年代末到90年代初,AI遭遇了一系列财政问题。

变天的最早征兆是1987年AI硬件市场需求的突然下跌。Apple和IBM生产的台式机性能不断提升,到1987年时其性能已经超过了Symbolics和其他厂家生产的昂贵的Lisp机。老产品失去了存在的理由:一夜之间这个价值五亿美元的产业土崩瓦解。

XCON等最初大获成功的专家系统维护费用居高不下。它们难以升级,难以使用,脆弱(当输入异常时会出现莫名其妙的错误),成了以前已经暴露的各种各样的问题(例如资格问题(en:qualification problem))的牺牲品。专家系统的实用性仅仅局限于某些特定情景。

到了80年代晚期,战略计算促进会大幅削减对AI的资助。DARPA的新任领导认为AI并非“下一个浪潮”,拨款将倾向于那些看起来更容易出成果的项目。

1991年人们发现十年前日本人宏伟的“第五代工程”并没有实现。事实上其中一些目标,比如“与人展开交谈”,直到2010年也没有实现。 与其他AI项目一样,期望比真正可能实现的要高得多。

躯体的重要性:Nouvelle AI与嵌入式推理

80年代后期,一些研究者根据机器人学的成就提出了一种全新的人工智能方案。他们相信,为了获得真正的智能,机器必须具有躯体 – 它需要感知,移动,生存,与这个世界交互。他们认为这些感知运动技能对于常识推理等高层次技能是至关重要的,而抽象推理不过是人类最不重要,也最无趣的技能(参见Moravec悖论)。他们号召“自底向上”地创造智能,这一主张复兴了从60年代就沉寂下来的控制论。

另一位先驱是在理论神经科学上造诣深厚的David Marr,他于70年代来到MIT指导视觉研究组的工作。他排斥所有符号化方法(不论是McCarthy的逻辑学还是Minsky的框架),认为实现AI需要自底向上地理解视觉的物理机制,而符号处理应在此之后进行。

在发表于1990年的论文“大象不玩象棋(Elephants Don’t Play Chess)”中,机器人研究者Rodney Brooks提出了“物理符号系统假设”,认为符号是可有可无的,因为“这个世界就是描述它自己最好的模型。它总是最新的。它总是包括了需要研究的所有细节。诀窍在于正确地,足够频繁地感知它。” 在80年代和90年代也有许多认知科学家反对基于符号处理的智能模型,认为身体是推理的必要条件,这一理论被称为“具身的心灵/理性/ 认知(embodied mind/reason/cognition)”论题。

AI:1993 – 现在

现已年过半百的AI终于实现了它最初的一些目标。它已被成功地用在技术产业中,不过有时是在幕后。这些成就有的归功于计算机性能的提升,有的则是在高尚的科学责任感驱使下对特定的课题不断追求而获得的。不过,至少在商业领域里AI的声誉已经不如往昔了。“实现人类水平的智能”这一最初的梦想曾在60年代令全世界的想象力为之着迷,其失败的原因至今仍众说纷纭。各种因素的合力将AI拆分为各自为战的几个子领域,有时候它们甚至会用新名词来掩饰“人工智能”这块被玷污的金字招牌。AI比以往的任何时候都更加谨慎,却也更加成功。

里程碑和摩尔定律

1997年5月11日,深蓝成为战胜国际象棋世界冠军卡斯帕罗夫的第一个计算机系统。2005年,Stanford开发的一台机器人在一条沙漠小径上成功地自动行驶了131英里,赢得了DARPA挑战大赛头奖。2009年,蓝脑计划声称已经成功地模拟了部分鼠脑。

这些成就的取得并不是因为范式上的革命。它们仍然是工程技术的复杂应用,但是计算机性能已经今非昔比了。事实上,深蓝计算机比Christopher Strachey在1951年用来下棋的Ferranti Mark 1快一千万倍。这种剧烈增长可以用摩尔定律描述:计算速度和内存容量每两年翻一番。计算性能上的基础性障碍已被逐渐克服。

智能代理

90年代,被称为“智能代理(en:intelligent agents)”的新范式被广泛接受。[132]尽管早期研究者提出了模块化的分治策略, 但是直到Judea Pearl,Alan Newell等人将一些概念从决策理论和经济学中引入AI之后现代智能代理范式才逐渐形成。当经济学中的“理性代理(rational agent)”与计算机科学中的“对象”或“模块”相结合,“智能代理”范式就完善了。

智能代理是一个系统,它感知周围环境,然后采取措施使成功的几率最大化。最简单的智能代理是解决特定问题的程序。已知的最复杂的智能代理是理性的,会思考的人类。智能代理范式将AI研究定义为“对智能代理的学习”。这是对早期一些定义的推广:它超越了研究人类智能的范畴,涵盖了对所有种类的智能的研究。

这一范式让研究者们通过学习孤立的问题找到可证的并且有用的解答。它为AI各领域乃至经济学,控制论等使用抽象代理概念的领域提供了描述问题和共享解答的一种通用语言。人们希望能找到一种完整的代理架构(像Newell的en:SOAR那样),允许研究者们应用交互的智能代理建立起通用的智能系统。

“简约派”的胜利

越来越多的AI研究者们开始开发和使用复杂的数学工具。人们广泛地认识到,许多AI需要解决的问题已经成为数学,经济学和运筹学领域的研究课题。数学语言的共享不仅使AI可以与其他学科展开更高层次的合作,而且使研究结果更易于评估和证明。AI已成为一门更严格的科学分支。 Russell和Norvig(2003)将这些变化视为一场“革命”和“简约派的胜利”。

Judea Pearl发表于1988年的名著将概率论和决策理论引入AI。现已投入应用的新工具包括贝叶斯网络,隐马尔可夫模型,信息论,随机模型和经典优化理论。针对神经网络和进化算法等“计算智能”范式的精确数学描述也被发展出来。

幕后的AI

AI研究者们开发的算法开始变为较大的系统的一部分。AI曾经解决了大量的难题,这些解决方案在产业界起到了重要作用。应用了AI技术的有数据挖掘,工业机器人,物流,语音识别,银行业软件,医疗诊断和Google搜索引擎等。

AI领域并未从这些成就之中获得多少益处。AI的许多伟大创新仅被看作计算机科学工具箱中的一件工具。Nick Bostrom解释说,“很多AI的前沿成就已被应用在一般的程序中,不过通常没有被称为AI。这是因为,一旦变得足够有用和普遍,它就不再被称为AI了。”

90年代的许多AI研究者故意用其他一些名字称呼他们的工作,例如信息学,知识系统,认知系统或计算智能。部分原因是他们认为他们的领域与AI存在根本的不同,不过新名字也有利于获取经费。至少在商业领域,导致AI之冬的那些未能兑现的承诺仍然困扰着AI研究,正如New York Times在2005年的一篇报道所说:“计算机科学家和软件工程师们避免使用人工智能一词,因为怕被认为是在说梦话。”

HAL 9000在哪里?

1968年亚瑟·克拉克和史丹利·库柏力克创作的《“2001太空漫游”》中设想2001年将会出现达到或超过人类智能的机器。他们创造的这一名为HAL-9000的角色是以科学事实为依据的:当时许多顶极AI研究者相信到2001年这样的机器会出现。

“那么问题是,为什么在2001年我们并未拥有HAL呢?” Marvin Minsky问道。 Minsky认为,问题的答案是绝大多数研究者醉心于钻研神经网络和遗传算法之类商业应用,而忽略了常识推理等核心问题。另一方面,John McCarthy则归咎于资格问题(en:qualification problem)。Ray Kurzweil相信问题在于计算机性能,根据摩尔定律,他预测具有人类智能水平的机器将在2029年出现。Jeff Hawkins认为神经网络研究忽略了人类大脑皮质的关键特性,而简单的模型只能用于解决简单的问题。还有许多别的解释,每一个都对应着一个正在进行的研究计划。目前以自然语言理解问题为突破口,以本源语义为对象,通过对“理解”与“智能”的界定研究,人类级别的人工智能研究已经取得进展。

End.


分享到:


相關文章: