刷leetcode——和为K的子数组

这道题主要是找规律,优化的时候可以利用哈希表和数组的特性。

原题

给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。

示例 1 :

<code>输入:nums = [1,1,1], k = 2输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。/<code>

说明 :

  1. 数组的长度为 [1, 20,000]。
  2. 数组中元素的范围是 [-1000, 1000] ,且整数 k 的范围是 [-1e7, 1e7]。

原题url:https://leetcode-cn.com/problems/subarray-sum-equals-k/

解题

一开始的想法肯定就是利用暴力解法了,三层 for 循环的那种,第1层和第2层选择起点和终点,第3层则是计算起点到终点的总和。这样的想法最简单,但很可惜,直接超时了,让我们稍微优化一下。

子数组之和

因为题目要求子数组下标连续,那么我们想想,如果要求sum(i, j)(也就是从下标 i 到下标 j 的子数组之和),其实可以转化成sum(0, i - 1) - sum(0, j)。这样的话,就可以把上面的三层for循环优化成两层。

接下来我们直接看看代码:

<code>class Solution {    public int subarraySum(int[] nums, int k) {        // sum(i, j) = sum(0, j) - sum(0, i - 1)        int[] sumArray = new int[nums.length];        sumArray[0] = nums[0];        for (int i = 1; i < nums.length; i++) {            sumArray[i] = sumArray[i - 1] + nums[i];        }        int result = 0;        int sum = 0;        for (int i = sumArray.length - 1; i >= 0; i--) {            // 前i个数之和            if (sumArray[i] == k) {                result++;            }            // 查询从(j + 1)到i的和            for (int j = i - 1; j >= 0 && j != i; j--) {                sum = sumArray[i] - sumArray[j];                if (sum == k) {                    result++;                }            }        }        return result;    }}/<code>

提交OK,但时间复杂度是O(n^2),优化一下。

用哈希表优化

我们想想,上面使用使用第二层for循环,主要是为了查出 sumArray 中是否还存在等于sumArray[i] - k的数,这明显是一个映射关系,因此我们用一个 map 去记录中间的求和结果。

<code>class Solution {    public int subarraySum(int[] nums, int k) {        // sum(i, j) = sum(0, j) - sum(0, i - 1)        // 用map存储,key为sum,value为第i个数        Map<integer>> map = new HashMap<>(nums.length * 4 / 3 + 1);        // 数组求和        int sum = 0;        // 记录一共有哪些和        Set<integer> sumSet = new HashSet<>();        for (int i = 0; i < nums.length; i++) {            sum += nums[i];            sumSet.add(sum);            // 查看当前是否已经记录            List<integer> indexList = map.get(sum);            if (indexList == null) {                indexList = new LinkedList<>();            }            indexList.add(i);            map.put(sum, indexList);        }        int result = 0;        for (Integer subSum : sumSet) {            List<integer> list = map.get(subSum);            // 如果list为null,说明是被移除了,说明之前已经计算过            if (list == null) {                continue;            }            if (subSum == k) {                result += map.get(subSum).size();            }            // 剩余的和            int remainSum = subSum - k;            List<integer> remainList = map.get(remainSum);            // 如果为null,说明不存在            if (remainList == null) {                continue;            }            // 如果不为null,说明存在,则可以进行配对            // 让list和remainList进行配对            for (int index1 : list) {                for (int index2 : remainList) {                    if (index1 <= index2) {                        continue;                    }                    result++;                }            }        }        return result;    }}/<integer>/<integer>/<integer>/<integer>/<integer>/<code>

提交OK,虽然较之前的方法时间效率上有所提高,但并没有本质区别。特别是最后的双重 for 循环,因为下标只有大的减小的才有意义,这样也就给自己额外增加了运算。

那么反思一下,是否真的有必要提前算好子数组的和?如果一边遍历一边求和,并将求和的结果存入map中,那么 map 中存在的,一定是下标小于自己的求和结果。针对这点,我们可以再做一步优化:

<code>public class Solution {    public int subarraySum(int[] nums, int k) {        // 最终结果的数量        int count = 0;        // 求和        int sum = 0;        // key为中间求出了哪些和,value为当前和有几种情况        HashMap<integer> map = new HashMap<>();        // 和为0有1中情况,就是一个数都不选        map.put(0, 1);        // 遍历数组        for (int i = 0; i < nums.length; i++) {            // 求和            sum += nums[i];            // map中是否有记录剩余的值            if (map.containsKey(sum - k)) {                // 累加,此处可以直接添加,是因为求和是从前往后进行的,现在能找到的,说明一定是之前的                count += map.get(sum - k);            }            // 记录当前的值            map.put(sum, map.getOrDefault(sum, 0) + 1);        }        return count;    }}/<integer>/<code>

提交OK,这样时间复杂度就变为了O(n)。

数据结构的优化

现在,我们用哈希表来存储中间结果。虽然哈希表的查找效率理论上可以达到O(1),但考虑到哈希冲突,最坏情况下还是有可能达到O(n)。真正能够保证达到O(1)的数据结构,是数组(用空间换取时间)。

那这个用来存储的一维数组究竟长度该设置为多少呢?自然就是找出数组中子数组之和的最大值和最小值,两者求差,结果就是最终的数组长度。利用这个数组去存储子数组求和的结果,这样就能保证在查找时的效率了。

<code>class Solution {    public int subarraySum(int[] nums, int k) {        int sum = 0;        // sum的最小值和最大值,因为可以一个数值都不选,因此0作为初始值        int min = 0;        int max = 0;        // 求和        for (int n : nums) {            sum += n;            min = Math.min(min, sum);            max = Math.max(max, sum);        }        // sums[i]代表从下标为0到下标为i的子数组之和        // 用一个数组存储,相比于map,取值更快,用空间换取时间        int[] sums = new int[max - min + 1];        // 最终结果        int count = 0;        sum = 0;        // 遍历数组        // 需要重新求和,因为没有类似set这样的结构存储了结果        for (int n : nums) {            // 求和            sum += n;            // 新的目标值            int target = sum - min - k;            // 是否有超过范围            if (target >= 0 && target < sums.length) {                count += sums[target];            }            sums[sum - min]++;        }        // 再加上本身就是k的子数组的数量        if (k - min >= 0 && k - min < sums.length) {            count += sums[k - min];        }        return count;    }}/<code> 

提交OK,执行时间上更快了。

总结


以上就是这道题目我的解答过程了,不知道大家是否理解了。这道题主要是找规律,优化的时候可以利用哈希表和数组的特性。

有兴趣的话可以访问我的博客或者关注我的公众号、头条号,说不定会有意外的惊喜。

https://death00.github.io/


分享到:


相關文章: