黄金分割率是多少?

山东韩师傅胶业孟斌

黄金分割,是初二数学比例线段中的一个重要内容,学好黄金分割对于学好相似形这一章很有必要。

提到黄金分割,大家最先想到可能就是0.618,其实0.618是个近似值。关于黄金分割的起源,大多数人认为来自毕达哥拉斯学派。毕达哥拉斯学派还有个重要发现,那就是毕达哥拉斯定理也就是勾股定理。


黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值是个无理数,约等于0.618。以线段为例,请看下图。

我们可以用尺规作图的方法来找出一条线段的黄金分割点,请读者自行思考。


下面我们从数列的角度来认识黄金分割

设一个数列,它的最前面两个数是1、1,后面的每个数都是它前面两数之和,这样的数列叫菲波那契数列。例如1、1、2、3、5、8、13、21……通过计算,大家可以发现相邻的两个数的比值逐逐渐逼近黄金分割比。

黄金分割蕴藏着丰富的美学价值,被认为是建筑和艺术中最理想的比例。建筑师对数字0.618特别偏爱,古埃及的金字塔,巴黎圣母院,艾菲尔铁塔,帕特农神庙都有黄金分割的足迹。

黄金分割还可以应用到优选法之中。优选法是以数学原理为指导,合理安排试验,以尽可能少的实验次数,尽快找到生产和科学实验中最优方案的方法。优选法中就有一种方法就叫0.618法。


多元视角

黄金分割率又叫黄金分割比,把一条线段分成两部分,使其中一部分与全长之比等于另一部分与这部分之比

把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割。其比值是(√5-1):2,近似值为0.618,通常用希腊字母Ф表示这个值。

附:黄金分割数前面的32位为:0.6180339887 4989484820 458683436565

设一条线段AB的长度为a,C点在靠近B点的黄金分割点上,且AC为b,则a比b就是黄金数

黄金分割的发现与推广:

在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。


尺规作图公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,关于黄金分割比例的起源大多认为来自毕达哥拉斯学派。

1、设已知线段为AB,过点B作BD⊥AB,且B

图示

BD=AB/2

2、连结AD

3、 以D为圆心,DB为半径作弧,交AD于E

4、以A为圆心,AE为半径作弧,交AB于C,则点C即为黄金分割点

在一个黄金矩形中,以一个顶点为圆心,矩形的较短边为半径作一个四分之一圆,交较长边于一点,过这个点,作一条直线垂直于较长边,这时,生成的新矩形仍然是一个黄金矩形,这个操作可以无限重复,产生无数个的黄金矩形.

黄金分割的扩展:

1.设

为黄金比,便有

。然后有

,得

。对等式右边分母中的

又以

代替,可得

;以此类推,可得无穷连分数。对等式进行类似的代替,可得无穷连根号。

2.昨天有分析过斐波那契数列,

经计算发现相邻两个斐波那契数的比值是随序号的增加而逐渐逼近黄金分割比。由于斐波那契数都是整数,两个整数相除之商是有理数,而黄金分割是无理数,所以只是不断逼近黄金分割。

3.黄金三角形:

所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值,正是因为其腰与边的比为(√5-1)/2而被称为黄金三角形。黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。由五角形的顶角是36度可得出黄金分割的数值为2sin18度(即2*sin(π/10))。

将一个正五边形的所有对角线连接起来,在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的,所产生的五角星里面的所有三角形都是黄金分割三角形。

黄金分割的应用:

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,这一比值能够引起人们的美感,被认为是建筑和艺术中最理想的比例。此外在股市中黄金分割线的应用十分广泛,有兴趣的朋友可以研究研究,说不定可以发财致富哦.

画家们发现,按0.618:1来设计的比例,画出的画最优美,在达·芬奇的作品《维特鲁威人》、《蒙娜丽莎》、还有《最后的晚餐》中都运用了黄金分割。而现今的女性,腰身以下的长度平均只占身高的0.58,因此古希腊的著名雕像断臂维纳斯及太阳神阿波罗都通过故意延长双腿,使之与身高的比值为0.618。建筑师们对数字0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,希腊雅典的巴特农神庙,都有黄金分割的足迹。

优选法中的应用:

0.618法(黄金分割法)

0.618法就是采用上面的思路来选取x1和x2的:

不失一般性,假定(a,b)区间是(0,1),即f(x)在(0,1)区间上有单峰极值,选取得两个点x1,x2分别记为x和1-x,即在x和1-x两点进行实验,不妨假定保留下来的是(0,x)区间。

继而在(0,x)区间上两个点x^2和(1-x)x处做实验,如果x^2=1-x,那么上次在1-x处的实验就可以派上用场,节省一次实验,而且舍去的区间是原来区间1-x的一部分。故有x^2+x-1=0,可以解得

第一次选择0.382(b-a),0.618(b-a),若保留了(0,0.618),由于0.618*0.618=0.382,因此下一轮只需要在0.618*0.382=0.216处做另一次实验,0.382的实验结果在上一轮中得出,减少了计算量,每次消去的区间还大。

这个其实在生活中用处是挺大的,例如要你猜一个数字,你不用一个一个猜,可以从给定数字范围的0.618处开始.可以减少猜的次数哦,不信可以试试哦!


学霸数学

黄金分割,就是把一条线段分为两部分,使其中一部分与全长之比等于另一部分与这部分之比;其比值为(√5-1)╱2 ,这就是黄金分割率;它是一个无理数,近似值为 0.618(取小数点前三位数字)。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值;现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其功能性与美观性。
那么,
如何求一条线段的黄金分割点 ?最佳方法是:
用直尺和园规作图。

作图的步骤如下:



任意画出一条线段 AB ,分别以 A、B 为园心,半经大于 1╱2 AB 作弧,相交于 D、E ,连接 DE 交 AB 于 M ,则 M 为线段 AB 的中点。(DE为线段AB的中垂线 )



以 A 为园心,以 AM 长为半经作园,与 BA 的延长线相交于 N 。



分别以 M、N 为园心 ,半径大于 1╱2 MN,在线段 AB 的同一侧作弧,相交于 F ,连接 AF ,AF 或其延长线与 ⊙A 相交于 C ,连接 BC 。那么,CA⊥AB,即△ABC 为 Rt△,并且 ∠CAB=90℃ ,设线段长为单位"1",即 AB=1,则 AC=1╱2 ,BC=√5╱2 。



以 C 为园心,以 CA 的长为半径作弧,交 BC 于 G。那么,BG=(√5-1)╱2 。



以 B 为园心,以 BG 的长为半径作弧,交 AB 于 O ,那么,O 点就是线段 AB 的黄金分割点。BO=BG=(√5-1)╱2 。

证明不再版述!

附:作图求黄金分割点,用园规和直尺既规范又精确;倘若作图用刻度尺、三角尺,或量角器,那么,需要目测读数……误差难免增大!


分享到:


相關文章: