氮化镓最强风口来临,为什么这么多人看好氮化镓?

随着半导体工艺的特征尺寸日益逼近理论极限,摩尔定律对半导体行业的加速度已经明显放缓。未来半导体技术的提升,除了进一步榨取摩尔定律在制造工艺上的最后的“剩余价值”外,寻找硅以外的新一代半导体材料,则成了一个重要的方向。在这个过程中,氮化镓近年来作为一个高频词汇,进入了人们的视野。

氮化镓是不是新物种

氮化镓的分子式为GaN,是半导体行业内公认的一种第三代半导体材料。芯片内部的氮化镓,与硅、砷化镓为代表的第一、二代半导体材料相比,GaN具有更宽的禁带宽度、更高的击穿电压以及更快的饱和电子漂移速率等物理性质。

虽然近来GaN的热度和呼声很高,但事实上这种材料并非新生物种。其实,早在100多年前GaN就被发现了,并在20世纪90年代被用于制作蓝光LED。不过受限于当时的制程工艺,GaN并没有被广泛运用。

氮化镓最强风口来临,为什么这么多人看好氮化镓?

氮化镓为什么会如此抢手

1.GaN在5G方面的应用

射频氮化镓技术是5G的绝配,基站功放使用氮化镓。氮化镓、砷化镓和磷化铟是射频应用中常用的半导体材料。

与砷化镓和磷化铟等高频工艺相比,氮化镓器件输出的功率更大;与碳化硅等功率工艺相比,氮化镓的频率特性更好。氮化镓器件的瞬时带宽更高,这一点很重要,载波聚合技术的使用以及准备使用更高频率的载波都是为了得到更大的带宽;与硅或者其他器件相比,氮化镓速度更快。GaN可以实现更高的功率密度,对于既定功率水平,GaN具有体积小的优势。有了更小的器件,就可以减小器件电容,从而使得较高带宽系统的设计变得更加轻松。

氮化镓最强风口来临,为什么这么多人看好氮化镓?

从目前的应用上看,功率放大器主要由砷化镓功率放大器和互补式金属氧化物半导体功率放大器组成,其中又以GaAs PA为主流。但随着5G的到来,砷化镓器件将无法满足在如此高的频率下保持高集成度。

于是,GaN成为下一个热点。氮化镓作为一种宽禁带半导体,可承受更高的工作电压,意味着其功率密度及可工作温度更高,因而具有高功率密度、低能耗、适合高频率等特点。

2.GaN在快充市场的应用

随着电子产品的屏幕越来越大,充电器的功率也随之增大,尤其是对于大功率的快充充电器,使用传统的功率开关无法改变充电器的现状。

而GaN技术可以做到,因为它是目前全球最快的功率开关器件,并且可以在高速开关的情况下仍保持高效率水平,能够应用于更小的元件,应用于充电器时可以有效缩小产品尺寸。

3.GaN在无人驾驶技术中的应用

让人感到兴奋并可瞥见未来的自动驾驶,也是GaN的应用领域。在车顶上安装了用作车辆的“眼睛”的激光雷达(LiDAR)系统。LiDAR器件快速发射出控制光束,以及纪录光束从一个物体上反射回来到传感器的时间,并且可以确定这个物体的方向,从而制成在车辆四周的三维360度全景。激光光束的发射速度越快,LiDAR系统识别物体的能力或场景的分辨率将会更高。

氮化镓最强风口来临,为什么这么多人看好氮化镓?

GaN技术在LiDAR系统中发挥非常重要的作用,相较MOSFET器件而言,开关速度快十倍,使得LiDAR系统具备优越的解像度及更快速反应时间等优势,由于可实现优越的开关转换,因此可推动更高准确性。这些性能推动全新及更广阔的LiDAR应用领域的出现包括支持电玩应用的侦测实时动作、以手势驱动指令的计算机及自动驾驶汽车等应用。

4.GaN在国防工业中的应用

GaN在国防工业中的应用前景也很广阔,雷神宣布将开始在新生产的GEM-T拦截器中使用氮化镓计算机芯片,以取代目前在导弹发射器中使用的行波管。雷神希望通过使用GaN芯片升级GEM-T的发射器,提高拦截器的可靠性和效率。此外,在新生产导弹中过渡到GaN意味着发射器不需要在拦截器的使用寿命期间更换。

氮化镓最强风口来临,为什么这么多人看好氮化镓?

新发射器具有与旧发射器相同的外形和功能,不需要额外的冷却,并且可以在通电几秒钟内运行。这意味着采用新型GaN发射器的GEM-T将能够继续在最苛刻的条件下运行。

这种发射器技术也可能会在其他导弹上看到其他测试。陆军表示有兴趣用这些类型的发射器取代整个库存,在GEM-T计划中采用这些发射器能够将修复成本降低36%。

目前,氮化镓已经拥有了足够广阔的应用空间。作为第三代半导体新技术,也是全球各国争相角逐的市场,并且市面上已经形成了多股氮化镓代表势力。

氮化镓最强风口来临,为什么这么多人看好氮化镓?


分享到:


相關文章: