汽车电脑是如何进行自诊断的?

南京万通新能源


故障自诊断模块监测的对象是电控汽车上的各种传感器(如空气流量传感器)、电子控制系统本身以及各种执行元件(如继电器),故障判断正是针对上述3种对象进行的。故障自诊断模块共用汽车电子控制系统的信号输入电路,在汽车运行过程中监测上述3种对象的输入信息,当某一信号超出了预设的范围值且这一现象在一定的时间内不会消失,故障自诊断模块便判断为这一信号对应的电路或元件出现故障,并把这一故障以代码的形式存入内部存储器,同时点亮仪表盘上的故障指示灯。针对3种监控对象产生的故障,故障自诊断模块采取不同的应急措施。
传感器的故障自诊断
当某一传感器或电路产生了故障后,其信号就不能再作为汽车的控制参数,为了维持汽车的运行,故障自诊断模块便从其程序存储器中调出预先设定的经验值,作为该电路的应急输人参数,保证汽车可以继续工作;微机对传感器的故障自诊断不需要专门的线路,只需在软件中编制传感器输入信号识别程序,即可实现对传感器的故障自诊断。工作时,各传感器的信号不断地进入到微机,微机根据其内部设置的传感器信号,由监测软件判别输入的信号是否有异常。如果某一传感器信号的电压超出设定的范围或信号丢失,监测软件就判定该传感器有故障或有关线路有问题,驱动故障灯闪亮,并将该故障以代码形式储存到微机内的存储器中。如水温传感器的正常输入信号电压变化范围为0.3 V~4.7 V,对应的发动机冷却水温度为-30℃~120℃。微机检测到的信号电压长时间超出此范围时,则传感器信号识别监测软件即判定发动机冷却水温度传感器或其电路存在故障。微机将此故障以代码的形式存入存储器中,同时点亮仪表板上的故障灯。
微机系统的故障自诊断
当电子控制系统自身产生故障时,故障自诊断模块便触发备用控制回路对汽车进行应急的简单控制,使汽车可以开到修理厂进行维修,这种应急功能就叫故障运行,又称跛行功能。微机内部如果发生故障,控制程序的例行程序就不可能正常运行,微机就处于异常工作状态,汽车将无法行驶。为了保证汽车在微机本身出现故障时,仍能继续运行。
采用后备回路系统,使汽车进入简易控制运行状态,使车辆行驶。在微机内部出现异常情况时,微机自诊断系统也能显示其故障,并记录下故障代码,将故障灯点亮。微机工作是否正常是由被称为监视回路的电路(监视器)进行监视的,监视器中安装有独立于微机系统之外的计数器。微机正常运行时,由微机的运行程序对计数器定时清零处理,这样,监视器中计数器的数值是永远不会出现计数满而溢出的现象;否则微机便不能对这个计数器进行定时清零,致使监视计数器出现溢出现象。
以电控发动机为例,当监视计数器溢出时,其输出端的电平由低电平变为高电平。计数器输出端电平的这一变化,将直接触发后备回路,后备回路根据起动信号和怠速触点闭合状态,分别按设定的喷油持续时间和点火提前角对喷油器和点火电子组件等执行元件进行控制。系统根据计数器溢出判定微机发生故障,显示其故障,储存故障代码。后备系统是根据存储于只读存储器中的基本设置对汽车进行简单控制的,基本设置固定值的大小取决于车型。
执行器的故障自诊断
当某一执行元件出现可能导致其它元件损坏或严重后果的故障时,为了安全起见,故障自诊断模块采取一定的安全措施,自动停止某些功能的执行,这种功能称为故障保险。如:当点火电子组件出现故障时,故障自诊断模块就会切断燃油喷射系统电源,使喷油器停止喷油,防止未燃烧混合气体进入排气系统引起爆炸。在电控系统工作时,微机对执行器进行的是控制操纵,微机向执行器输出控制信号,而执行器无信号返回微机。因此,对执行器的工作情况进行诊断,一般需要增设专用故障诊断电路,即微机向执行器发出一个控制信号,执行器要有一条专用电路来向微机反馈其控制信号的执行情况。发动机电控点火系统中的点火监控信号就是用来判定点火系统工作是否正常的监视信号。在点火系统正常情况下,当微机对点火电子组件进行控制时,点火电子组件每进行一次点火,便由点火监视回路将点火执行情况以电信号的形式反馈给微机。当点火线路或点火电子组件出现故障时,若微机发出点火控制命令,却得不到反馈的点火监视信号,点火监控信号此时微机故障自诊断系统即判定点火系有关部位有故障,显示故障,存储故障代码。

汽车粉丝之家


现在有一个高科技仪器可以自助检查汽车的毛病


老余侃大山


可以用obd设备读取行车电脑信息


分享到:


相關文章: