吴恩达老师课程笔记系列第九节-单变量线性回归之梯度下降理解(5)

第九节-单变量线性回归之梯度下降理解(5)

在之前,我们给出了一个数学上关于梯度下降的定义,本次视频我们更深入研究一下,更直观地感受一下这个算法是做什么的,以及梯度下降算法的更新过程有什么意义。梯度下降算法如下:

吴恩达老师课程笔记系列第九节-单变量线性回归之梯度下降理解(5)

描述:对θ赋值,使得J(θ)按梯度下降最快方向进行,一直迭代下去,最终得到局部最小值。其中是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大。

吴恩达老师课程笔记系列第九节-单变量线性回归之梯度下降理解(5)

对于这个问题,求导的目的,基本上可以说取这个红点的切线,就是这样一条红色的直线,刚好与函数相切于这一点,让我们看看这条红色直线的斜率,就是这条刚好与函数曲线相切的这条直线,这条直线的斜率正好是这个三角形的高度除以这个水平长度,现在,这条线有一个正斜率,也就是说它有正导数,因此,我得到的新的θ1,更新后θ1等于θ1减去一个正数乘以α。

这就是我梯度下降法的更新规则:

吴恩达老师课程笔记系列第九节-单变量线性回归之梯度下降理解(5)

让我们来看看如果α太小或太大会出现什么情况:

如果α太小了,即我的学习速率太小,结果就是只能这样像小宝宝一样一点点地挪动,去努力接近最低点,这样就需要很多步才能到达最低点,所以如果太小的话,可能会很慢,因为它会一点点挪动,它会需要很多步才能到达全局最低点。

如果α太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又移动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越来越远,所以,如果太大,它会导致无法收敛,甚至发散。

现在,我还有一个问题,当我第一次学习这个地方时,我花了很长一段时间才理解这个问题,如果我们预先把θ1放在一个局部的最低点,你认为下一步梯度下降法会怎样工作?

假设你将θ1初始化在局部最低点,在这儿,它已经在一个局部的最优处或局部最低点。结果是局部最优点的导数将等于零,因为它是那条切线的斜率。这意味着你已经在局部最优点,它使得θ1不再改变,也就是新的θ1等于原来的θ1,因此,如果你的参数已经处于局部最低点,那么梯度下降法更新其实什么都没做,它不会改变参数的值。这也解释了为什么即使学习速率α保持不变时,梯度下降也可以收敛到局部最低点。

我们来看一个例子,这是代价函数J(θ)

吴恩达老师课程笔记系列第九节-单变量线性回归之梯度下降理解(5)

我想找到它的最小值,首先初始化我的梯度下降算法,在那个品红色的点初始化,如果我更新一步梯度下降,也许它会带我到这个点,因为这个点的导数是相当陡的。现在,在这个绿色的点,如果我再更新一步,你会发现我的导数,也即斜率,是没那么陡的。随着我接近最低点,我的导数越来越接近零,所以,梯度下降一步后,新的导数会变小一点点。然后我想再梯度下降一步,在这个绿点,我自然会用一个稍微跟刚才在那个品红点时比,再小一点的一步,到了新的红色点,更接近全局最低点了,因此这点的导数会比在绿点时更小。所以,我再进行一步梯度下降时,我的导数项θ1是更小的,更新的幅度就会更小。所以随着梯度下降法的运行,你移动的幅度会自动变得越来越小,直到最终移动幅度非常小,你会发现,已经收敛到局部极小值。

回顾一下,在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的幅度,这是因为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是梯度下降的做法。所以实际上没有必要再另外减小α。这就是梯度下降算法,你可以用它来最小化任何代价函数J(θ),不只是线性回归中的代价函数J(θ)。

在接下来的课程中,我们要用代价函数J(θ),回到它的本质,线性回归中的代价函数。也就是我们前面得出的平方误差函数,结合梯度下降法,以及平方代价函数,我们会得出第一个机器学习算法,即线性回归算法。


分享到:


相關文章: