生物信号的显示、记录和处理

生物信号的显示、记录和处理

生物信号进入到计算机之后,将以直观的生物波形形式显示在计算机屏幕上,便于实验人员观察。同时,所有的数字化生物信号将被记录到硬盘等永久存贮介质中,便于事后分析处理。

对生物信号数字化之后,最大的好处就是可以利用计算机的处理能力对生物信号进行各种各样的处理,以获取原始生物信号隐藏的其他信号。例如对原始信号进行频谱分析,可以观察到原始信号的频率组成成分。

基于计算机的生物信号采集与处理系统常用的信号处理方法包括:

(1)微分和积分:使用运算放大器,可实现对模拟信号的微分或积分,而用计算机对数字信号作微分或积分则更为准确、方便。

(2)叠加平均:生物信号测量中常常出现信号幅度很小而噪声很大的情况,使得有用的信号淹没在噪声之中,难以测量和处理。如果信号和噪声频谱不一致,可以用滤波的方法分离出有效信号;如果噪声和信号频谱重叠,滤波不再适用。这种情况使用叠加平均的方法可以抑制噪声,提高信噪比。

叠加平均是对具有确定参考点的重复信号进行多次叠加,然后取平均值。这种方法使用的条件是:噪声具有随机特性,信号具有重复特性,两者互不相关。由于信号是有规律的,所以,叠加后信号增强;而噪声是随机的,叠加后相互抵消。叠加N次后,信号幅度增加N倍,而噪声则大幅衰减。

叠加平均法一般用于诱发且信号较小的生物电测量。如视觉、听觉诱发电位等。

2.频谱分析任何信号都可以看成是不同频率的正弦波信号的叠加,频谱分析就是以组成信号的正弦波的频率为变量研究信号特性的方法。

在生物信号的测量中,我们记录到的多数信号都是随时间变化的信号,在生物医学工程上称为时域信号。频谱分析中的信号是频域信号,在频域里分析信号可使一些在时域中无明显特征的信号在频域里能出现明显特征,这是频域分析的最大优点。除此之外,频域分析还有使复杂计算简单化等优点。

对于离散时间信号,从时域到频城的转换要进行繁琐的叠加计算,而使用计算机进行快速傅里叶变换(FFT)可方便完成这一运算过程。


分享到:


相關文章: