谷歌在量子计算机领域已取得重大突破,量子时代离我们还有多远?

MC永不灭


量子时代倒是还很远。目前的量子计算技术主要还是实验验证阶段,采用的设备和方法在室温室压下都无法实现,因此没有实际使用的价值。

但是作为探索方向,可以通过云服务提供给研发单位,因此其在该系统上建立对应的算法或功能。

因此目前的量子计算,无论是取得什么样的突破,短时间之内都无法看到有接近现实使用场景的产品推出,更不要说普及进入量子时代了。


繁星落石


非常高兴能看到这个问题,作为985院校物理系,应用物理专业的毕业生,自认为有资格回答这个问题。我的答案是:我们已经生活在量子时代,量子力学的应用已经渗透到我们生活中的每一个角落。下面选择一些有代表性的案例,看看这些年都有哪些量子力学的应用成果:

最早的量子应用:1900年,用量子概念实现钢水温度测量

19世纪末,欧洲的钢铁工业迅速崛起,为了冶炼更高品质的钢铁,就产生了对炉温精确检测的需求。工程师们当然选择把这个任务交给了物理学家们去研究。

物理学家们的办法跟中国古人通过炉火的颜色来判断烧陶瓷的炉温原理是一样的:颜色对应炉温。只不过颜色判断误差很大,物理学家们为了精确标定温度采用了波长。

不同颜色的光对应着不同波长,这是当时的科学家们都知道的。只是肉眼能识别的颜色(波长)范围没有直接测量波长来得精确。

寻找波长和温度之间关系的过程,在仪器测量学中叫做标定。其中普朗克找到了一个全波谱的对应关系式,解决了温度和波长之间的对应关系的数学表达。从而完成了工程师们交付的炉温测量任务。

这个数学表达式的一个关键处理方法就是:需要把能量看做是一份一份的,不连续的,即能量的量子化。尽管此时,普朗克还没有意识到,能量量子化背后的科学意义,但量子时代就是这样悄无声息地到来了。

次早的量子应用:1929年,出现了光电管,开启了人类的影音时代

光电倍增管是将微弱光信号转换成电信号的真空电子器件,其物理学原理源自光电效应,即光能生电。1905年,爱因斯坦发表论文《关于光的产生和转化的一个试探性观点》,对于光电效应给出解释。

他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。对于马克斯·普朗克先前在研究黑体辐射中所发现的普朗克关系式,爱因斯坦给出另一种诠释:频率为f的光子拥有的能量为E=hf ;其中, h因子是普朗克常数,这对波粒二象性概念的提出有重大影响。

50年代中期,可见光波段的硫化镉、硒化镉、光敏电阻和短波红外硫化铅光电探测器投入使用。50年代末,美国军队将光敏电阻和短波红外硫化铅光电探测器投入使用,用于代号为“响尾蛇”的空空导弹,取得明显作战效果。

1970年,CCD图像传感器在Bell实验室发明,依靠其高量子效率、高灵敏度、低暗电流、高一致性、低噪音等性能,成为图像传感器市场的主导。90年代末,步入CMOS时代。

如今这种基于量子力学原理的光电感应器普遍应用于数码相机、摄像头、手机拍照、电视、电影的发射和图象传送、冶金、电子、机械、化工、地质、医疗、核工业、天文和宇宙空间研究等领域。

第三、量子力学理论预言了激光,带来了信息技术的革命

1917年,爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为 ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。

这是1917年,为后来的激光的发现奠定了理论的基础。激光的英文laser 这个词是由最初的首字母缩略词LASER演变而来,LASER的意思是“受激辐射光放大器”英文的单词的缩写简略。

1953年,美国物理学家查尔斯·哈德·汤斯和他的学生阿瑟·肖洛制成了第一台微波量子放大器,获得了高度相干的微波束。1958年,C.H.汤斯和A.L.肖洛把微波量子放大器原理推广应用到光频范围。

1960年,T.H.西奥多·梅曼制成了第一台红宝石激光器。1961年,伊朗科学家A.贾文等人制成了氦氖激光器。1962年,R.N.霍耳等人创制了砷化镓半导体激光器。2013年,南非科学与工业研究委员会国家激光中心研究人员开发出世界首个数字激光器,开辟了激光应用的新前景。

没有量子力学就不会有激光技术、没有光纤通信、就没有今天的互联网、没有激光治疗近视眼的手术、没有CD光盘、没有LED照明、没有平板电视、更不会有激光电视。

结束语——我们已经生活在量子时代

应该说,我们现在已经生活在量子时代,量子力学的研究成果已经渗透到了生活中的每一个角落。但这里必须要说明的是,尽管如此,如今这些应用还只是量子力学的初级应用,都还是比较简单的量子效应。

而量子计算的应用,应该算作是下一代量子技术的应用,因为它深入到量子力学的另外一个重要特征——相位。这里不是我们进行技术讨论的地方,不多做解释了。有兴趣的小伙伴可以看看我的文章,有关于量子力学相位方面的介绍。

我是郭哥聊科学,如果您觉得文章对您有帮助,欢迎您点赞、留言、转发以及关注支持。持续为您输出高质量的科普文章、期待与您能够进行深入的交流。


郭哥聊科学


您好!很高兴回答您的问题!我们都有探索科技前沿的兴趣和爱好。

美国东部时间下午6点,美国权威媒体独家报道,谷歌和IBM同时宣布,他们多年来一直秘密合作开发“四月一号”系统量子计算机,该计算机已于昨日测试并投入使用,预计将逐步向未来的外部世界。量子计算机的发展又向前推进了一大步。

但是,这个消息并不能说明量子时代即将来临。

2019年1月10日,IBM宣布推出世界上第一台商用的集成量子计算系统:IBM Q System One。这台20量子比特的系统集成在一个棱长为9英尺(约 2.74 米)的立方体玻璃盒中,作为一台能独立工作的一体机展出。当然,作为一台一体机,IBM Q System的体积也相当大了,但它包含了启动一个量子计算实验所需的所有东西,包括冷却量子计算硬件所需的所有设备。它能操纵20个量子比特,虽然量子比特的数量不及业界此前发布的一些设备,但它具有表现稳定、结构紧凑等特性,实用性大为增强。IBM称,这是一款可以“商用”的量子计算机。而事实上由于其庞大的体积,要正常商用完全不可能,仅仅属于实验室的一个装置。

“四月一号”系统量子计算机是谷歌和IBM联合研发的一个量子计算系统,其基本还建立在谷歌和IBM建立的“量子霸权”理论上的计算系统,还仅仅在实验室阶段,要正式商用距离还很遥远。

量子计算机的商用有哪些困难?

首先,商用化得量子计算机首先要有大量的保持量子特性的量子比特。这些量子比特在大量的实际运算中,很难保持其量子特性。量子计算机的优势只能在保持其量子特性的时候才能发挥其最高效能,可是,一个满足实际使用需求的计算机,与环境的作用将不可避免,系统的量子相干性很难保持,量子比特将遵循宏观领域的经典规律。对量子的编码可以解决这一问题,但它将使计算系统的规模变得更大。

建造一台量子计算机首先要解决的是核心硬件的问题。如何将更多的量子比特集成到处理器芯片并保持量子相干性的问题需要解决。

第二,理论和实际运用中大量的问题需要解决。特殊的量子算法、量子软件、量子互连技术,甚至其它一些尚未发明的技术都是量子计算机目前需要解决的问题、

那么量子计算机距离我们还有多远?

建立世界上有实用价值的量子计算机,科学家们普遍认为至少需要十年以上的时间。谷歌与IBM的紧密合作,包括更多的技术团队的合作研发,将大大促进量子计算机的快速发展。

总之,量子计算机的发展将会为人类的科学技术发展提供一个无限广阔的平台。但是,量子计算机距离量子时代还有一定的距离,我们的科学家正在努力解决各种困难问题,相信在不久我们都会面对高性能的量子计算机,我们的视觉将会成十倍、百倍、千倍的增加,人类的认知将会有更大的突破.


分享到:


相關文章: