是谁摇匀了宇宙的温度?几乎所有的背景温度都比绝对零度高2.73度

是谁摇匀了宇宙的温度?几乎所有的背景温度都比绝对零度高2.73度

​让邻居们在晚上熄掉所有灯光,你坐在阳台椅子上观察天空。虽然那些光过于黯淡,你的眼睛无法辨别,但来自宇宙最深处和宇宙微波背景辐射的光线的确进入了你的眼睛。如果用恰当的设备观察足够长的时间,你的辐射地图将显示宇宙中几乎所有背景都具有-270.42°C的温度,比绝对零度高2.73度。

现在,带上你的阳台椅子,去地球的另外一边,与你原先所在地方完全相对的地点,也就是所谓地球上的“对地”。如果你是在北京某地进行的初始观察,地球另一面相对的点应该在阿根廷某地,周围没有灯光。你再次凝视星空,收集那些在宇宙中旅行了一百三十八亿年最后进入你眼睛的光线。

还是-270.42°C。

完全一样的温度。宇宙微波背景辐射。

是谁摇匀了宇宙的温度?几乎所有的背景温度都比绝对零度高2.73度

但绝对没有理由到处一样啊。事实上,这种可能性应该完全不存在吧?

到达位于北京的你眼中的宇宙微波背景辐射来自可见宇宙的一边,而到达位于阿根廷的你眼中的宇宙微波背景辐射则来自可见宇宙的完全相反的另一边。这两边的光源如此遥远(一百三十八亿光年的两倍距离!),除非有些什么奇怪的事情发生在中间某个阶段,不然在我们宇宙的整个历史过程中,它们应该不可能相互接触。

所以它们不应该有着同样的温度。

要意识到这有多么奇怪,不妨拿着一杯热咖啡走进自己的起居室。

是谁摇匀了宇宙的温度?几乎所有的背景温度都比绝对零度高2.73度

首先,你起居室的肯定会比你的热咖啡冷,但只要你等足够久,你的咖啡与房间的温度应该变得相同,也就是说,两者都到达一个平衡温度。这是常识。

现在将你的咖啡杯放进冰箱,关上冰箱门。过一阵后,又会到达一个新的平衡温度。一个更低的温度。

带着你的饮料旅行到某个炎热的沙漠,又会带来新的平衡温度。这次是更高的温度。

所有这一切听起来都很正常。没什么奇怪的。

现在,再给你自己倒一杯热咖啡,将它放回你的起居室。它最后达到的温度与放在冰箱里的咖啡一样的可能性应该很小。

两个从来没有接触过,现在也并不接触,甚至互相都不知道对方存在的物体或地点没有任何理由到达同样的温度。这听起来是个很合理的假设,不是吗?这么合理的假设在外太空应该也可以适用吧。

是谁摇匀了宇宙的温度?几乎所有的背景温度都比绝对零度高2.73度

要让位于完全相反方向的“对地”位置的夜空在分别存在了一百三十八亿年之后都具有完全一样的-270.42°C,它们必定在过去某个阶段,通过某种方式互相接触。考虑到宇宙的年龄和它们的膨胀速度,它们之间如此遥远的距离应该确保了它们没有任何方式能够互相接触甚至交流。除非有些非常非常诡异的事发生。

有些东西,比如说,能以比光速更快的速度运动。

不幸的是,作为信号来说,这不可能。不管这些信号是什么,它们都不可能获得比光更快的速度。那是被禁止的现实。

但是,宇宙微波背景辐射温度就在那里,所有地方都完全一样,绝对不可能只是巧合。怎么会呢?

可能是时空——宇宙本身——成长得比光速还快,在过去的某个阶段。

这就是你逆着时间回溯到热大爆炸发生之前时所看到的现象,就在你进入那个被称为“暴胀期”的时候,在那时,宇宙中充满了暴胀场。

是谁摇匀了宇宙的温度?几乎所有的背景温度都比绝对零度高2.73度

早期宇宙有一个暴胀时期的想法被以现代的形式提出是在二十世纪八十年代。其基本想法是,很久以前,甚至物质、光和其他我们所知道的所有东西都尚未形成时,在可见宇宙之外,大爆炸之前,存在着一种场,充满了整个宇宙,带着互相排斥与引力相反的作用力。那个场非常强大,它引发了一段极为剧烈的膨胀期,那次膨胀将早期宇宙的不同部分以远远高于光速的速度炸开,所以今天看起来距离非常遥远,过去绝对不应该有接触的地方,实际上曾经紧贴在一起。

顺便提一下,这与爱因斯坦对于任何东西都不能以超过光速运动这一限制并不矛盾,因为在这里,发生膨胀的是时空本身,而不是在时空中运动的信号的速度。两个物体以超过光速的速度互相远离将永远,也从来不会被观察到。


分享到:


相關文章: