半导体制冷是如何实现的?效果如何?

春风化雨雨过无痕


您好!

半导体制冷器又叫热电致冷器,是二十世纪五十年代随着半导体材料的迅猛发展而产生的。在国防、工业、农业、医疗和日常生活等领域获得应用。就像你的这种图片上的产品小冰箱,也多用于车载小冰箱,这种冰箱放车上的确方便,但制冷效果一般达不到0度,或等于0度,现在车载冰箱又有往压缩机冰箱发展的趋势可冷却到零下40度。


再来说这半导体制冷器的工作原理

热电制冷是具有热电能量转换特性的材料,在通过直流电时具有制冷功能,由于半导体材料具有最佳的热电能量转换性能特性,所以人们把热电制冷称为半导体制冷。半导体制冷是建立于塞贝克效应、珀尔帖效应、汤姆逊效应、焦耳效应、傅立叶效应共五种热电效应基础上的制冷新技术。其中,塞贝克效应、帕尔贴效应和汤姆逊效应三种效应表明电和热能相互转换是直接可逆的,另外两种效应是热的不可逆效应。

(1)塞贝克效应,1821年,塞贝克发现在用两种不同导体组成闭合回路中,当两个连接点温度不同时,导体回路就会产生电动势(电流)。
(2)珀尔帖效应,珀尔帖效应是塞贝克效应的逆过程。由两种不同材料构成回路时,回路的一端吸收热量,另一端则放出热量。
(3)汤姆逊效应,若电流过有温度梯度的导体,则在导体和周围环境之间将进行能量交换。
(4)焦耳效应,单位时间内由稳定电流产生的热量等于导体电阻和电流平方的乘积。
(5)傅立叶效应,单位时间内经过均匀介质沿某一方向传导的热量与垂直这个方向的面积和该方向温度梯度的乘积成正比。


优点:

相较于现在大多用压缩机制冷的来说,半导体制冷器的尺寸小,可以制成体积不到1cm³的制冷器;重量轻,微型制冷器能够做到只有几十克甚至数克;无机械传动部分,工作中无噪音,无液态、气态工作介质,因而不污染环境,制冷参数不受空间方向以及重力影响,在大的机械过载条件下,能够正常地工作;通过调节工作电流的大小,可方便调节制冷速率;通过切换电流方向,可使制冷器从制冷状态转变为制热工作状态;作用速度快,使用寿命长,且易于控制。但制冷效果依然没有压缩机冰箱好。


存在问题:

虽然半导体制冷的研究面临诸多困难,但是可以欣喜地看到当前研究仍然呈现出一片欣欣向荣的景象。到目前为止,国内外的学者从不同角度去提高半导体的制冷效率,展现出各自的优势和实用性。但是半导体制冷的研究当前还存在以下问题。
(1)半导体制冷要想达到机械压缩制冷相当的制冷效率,材料的优值系数就必须提高。然而,直到现在,科学家对半导体制冷材料的研究并未有很大突破。半导体制冷温差较小和制冷系数不高是半导体制冷的最大缺点,而材料的优值系数不高导致这些缺点从而是阻碍半导体制冷发展的最主要因素,因此半导体材料的性能即优值系数z还有待于进一步的提高。
(2)有关冷、热端散热系统的优化设计的研究较少。这使得半导体制冷的设计多半处于理论计算阶段,半导体制冷的实际运行效果不能得到很好的保证。所以要不断深入进行半导体制冷器模块设计和系统性能优化的研究。
(3)相关领域的技术与手段的引用较少,材料的优值系数的停滞影响了整个半导体制冷行业的发展,所以运用包括新理论和新技术来研究和完善就变得非常重要。半导体制冷也是一个交叉学科,需要不同方面的知识相互配合,共同进步。
(4)随着科学技术的飞速发展,产品器件的尺寸有的越来越大,有的越来越小,有的状况越来越复杂,需要考虑多种因素。这样如何解决大功率半导体多级制冷的优化问题、小尺寸器件的局部散热问题和多因素的半导体热电能量转换问题就成为今后不断努力研究的内容 [1] 。

发展:

随着科技材料的日星月异,相信半岛体制冷也会解决很多问题,毕竟能无声无息的制冷,谁都会喜欢呢


一笑二哭三闹


用了珀尔帖效应采用了碲的化合物制成的新型制冷材料,优点是寿命长,无声,缺点是转换效率低,首先是在大型核潜艇中应用,当年第一代核潜艇乔治华盛顿号上用了18000多块制冷块作空调使用。实验室也可用,用5级串联在低真空0.01毫米汞柱环境中,曾得到了负128度的低温


分享到:


相關文章: