新科技快速指南系列之“基因编辑 CRISPR”:历史、现在与未来

新科技快速指南系列之“基因编辑 CRISPR”:历史、现在与未来

如果你问“Crispr 是什么?”简单来说,这是一种革命性的新型分子工具,科学家们可以利用它精确定位和切割任何种类的遗传物质。Crispr系统是科学家们用来操纵地球上任何生物(包括人类)的生命密码的最快、最简单和最便宜的方法。

复杂点来说, Crispr 代表的是集群的定期间隔式的重复。Crispr系统由具有序列剪切能力的蛋白质和遗传GPS导航组成。这种系统在细菌王国中自然进化出来,作为记忆和防御入侵病毒的一种方式。但是研究人员最近发现,他们可以重新利用原始免疫系统来精确地改变基因组,从而引发数十亿美元的DNA黑客热潮。

在短期内,Crispr不会结束疾病、饥饿或气候变化。也许永远不会。设计者也不会改变孩子的基因或犯下基因灭绝罪。(但开始谈论如此强大的技术可能带来的伦理困境,永远不会太早。)然而,Crispr 已经开始以更不激进的方式重塑我们周围的物理世界,一次一个碱基对。

CRISPR的历史

这是从酸奶开始的。为了制造酸奶,乳制品生产商长期以来一直使用嗜热链球菌( streptoccus thermophilus )来提供帮助。嗜热链球菌是一种吞噬牛奶中乳糖并排出乳酸的细菌。然而,直到2005年,一位名叫鲁道夫·巴兰古(Rodolphe Barrangou)的年轻微生物学家才发现,嗜热链球菌中含有奇怪的重复DNA序列片段——Crisprs,这些序列保证了嗜热链球菌免受那些能够导致破坏的病毒的侵袭。(如果嗜热菌消失了,鼻细菌( nastier bacteria)会进入其中,以乳糖为食,破坏产品。)

不久,杜邦收购了巴兰古供职的丹麦公司,并开始使用Crispr来保护其所有酸奶和干酪培养物。由于杜邦拥有全球乳制品市场50 %的份额,这意味着你可能已经在比萨上吃到过经Crispr优化的奶酪了。

与此同时,基因测序的成本直线下降,世界各地的科学家正在组装细菌的基因组。正如他们所做的那样,他们发现Crisprs随处可见——超过一半的细菌王国都有Crisprs。通常,这些序列的两侧是一组编码的一类称为内切核酸酶的切链酶的基因。科学家怀疑它们参与了这种原始的免疫系统,但究竟是怎么回事?

关键的洞察力来自于一种特别令人讨厌的病菌,它能引起喉咙不舒服。它的Crispr系统产生了两个RNA序列,这两个RNA序列连接到一种称为Cas9的蛤形内切核酸酶上。就像遗传GPS一样,这些序列将酶导向与RNA序列互补的DNA链。当它到达那里时,Cas9改变了形状,抓住 DNA 并将其切成两半。做出这一发现的分子生物学家詹妮弗·杜德纳(Jennifer Doudna )和艾曼纽·夏彭蒂尔(Emmanuelle Charpentier)在2012年与《科学》杂志上发表了他们关于细菌的研究成果。但在将这一技术作为基因工程的一种工具获得专利之前,这一点是不可能实现的。如果你切换RNA导航,你就可以把Cas9送到任何地方——比如说,把引起亨廷顿舞蹈病的基因剪下来。他们意识到,Crispr将是分子生物学家的曲速引擎。

CRISPR的未来

就目前而言,Crispr仍然是生物学家的流行语。但是就像计算机从一个乏味的、专门为数学爱好者设计的工具演变成了我们身体无处不在的、无形的延伸一样,Crispr总有一天会无缝地编织到我们现实的结构中。如果这只是一个生物性的问题,问题很容易就能解决。

以工业发酵为例。在老式基因工程技术的帮助下,科学家们已经将大肠杆菌和啤酒酵母等微生物,重新编程到可以生产从胰岛素到乙醇等各种物质的工厂中。Crispr将迅速扩大生物精炼厂所能生产的设计化学品、分子和材料的目录。自愈合混凝土?耐火、以植物为基础、比铝还轻的建筑材料?完全可生物降解的塑料?Crispr不仅使所有这些成为可能,也使大规模生产它们成为可能。

Crispr技术的民主化,加上其几乎无限的商业可能性,使得今天是成为一名分子生物学家的绝佳时机。想要制造只针对有害细菌而不消灭整个微生物群的抗生素吗?有些公司正在这样做。想要制作医生可以用来检测登革热和寨卡病等疾病的纸质诊断吗?也有研究实验室和创业公司正在这样做。随着更多工具上线,后端Crispr生态系统将不断扩展以支持、提供和优化这些工具。

诊断疾病

病毒的工作原理是把你的细胞变成它们DNA的小工厂。一个基于Crispr的测试可以从一滴血、一口唾沫或一滴尿液中提取出外源DNA,并在几分钟内告诉你你体内是否有寨卡病毒、登革热或黄热病。

农作物抗病

每年,真菌消灭了三分之一的农作物。Crispr可以找出最严重的“违规者”,这有助于农民在农作物发生枯萎病发生之前挽救收成。

对抗抗生素的耐药性

由于过度使用,世界上的抗生素正在失去效力。以Crispr为基础的新药物,只针对有害细菌,可以保持微生物群完整,有助于对抗抗生素耐药性。

原文链接:https://www.wired.com/story/wired-guide-to-crispr


分享到:


相關文章: