为什么宇宙最低温度是

缘是也原草


首先,问题方向不要弄错了,最低温度究竟是多少并不重要,毕竟温度的标尺是人类制定的:冰水混合物的温度是0度,水沸腾温度是100度(标准大气压下),如果当初人类制定的这两个标尺有所变化,比如说我们定义“冰水混合物温度为一亿度”,那么最低温度就不会是-273度了!

重要的是为何宇宙中存在一个最低温度(绝对零度),而不能再低了?

目前看来,并没有什么重大规律。简单说,达到绝对零度后,宇宙中的一切粒子都停止运动了,绝度的停止,任何微观粒子都是如此。

但量子力学的不确定性表明这是不可能的,不确定性表明,微观粒子的速度不确定性和位置不确定性的乘积必须大于普朗克常数。这就注定了粒子的速度不可能为零,微观粒子在任何时候都在不停地运动,实际上就是随机出现在某个地方。

如果继续深究下去,为什么微观粒子会具有不确定性?只能说它是微观世界的特性,是一种真实存在的现象,并不是假设,但目前我们并不知道背后的真正本质。

不但宇宙中存在最低温度,也存在最高温度,那就是普朗克温度,是宇宙大爆炸发生一个普朗克时间后的宇宙温度,宇宙中任何温度都不会高于普朗克温度!


宇宙探索


为什么宇宙最低温度是-273度左右?为什么不是-300度,这一定有重大物理规律吗?

这个话题就像光速为什么不是300000米/秒一样,其实我们也可以将光速折腾到这个数字的,我们只要修改度量衡中的1M长度为: 299792458/300000000即可,光速立马就从299792458米升格为整30万米/秒,同理,我们将摄氏温标重新定义,那么绝对零度立马就从-273℃变成-300℃,当然大家肯定不服气,这不是耍流氓嘛,没关系,咱简单来了解下温度我们认识温度的历史。

温度的历史,分子运动论的来历

早在1593年,伽利略的就发明了第一个温度计,当然那很原始,不过已经知道了利用介质的热胀冷缩来表示温度。

1665年,意大利天文学家惠更斯提出用水的冰点和沸点作为温度的参考点(但当时还不知道气压和沸点的关系)1742年,瑞典天文学家安德斯·摄尔修斯将一个大气压下的冰水混合物规定为0℃,同时将一个大气压下的水的沸点定为100℃,并且在两者之间均分为100个刻度。此方式在1743年被修订成现行的摄氏温标。

安德斯·摄尔修斯

1799年,伦福德伯爵通过摩擦生热的观察提出了热是一种运动的结论。早在1738年,丹尼尔·伯努利发表著作《流体力学》中提出了气体分子运动论,1820年英国一位铁道杂志的编辑赫拉派斯独立提出了伯努利曾经提出过的气体分子运动论,并且认为压强是气体粒子碰撞的结果,而且明确的提出了气体的温度取决于分子运动的速度。1824年,卡诺出版了《关于火的动力思考》,在书中卡诺提出了理想热机理论,奠定了热力学的理论基础。1827年,英国植物学家罗伯特·布朗利用一般的显微镜观察悬浮于水中的花粉时,发现了分裂出的花粉微粒的不规则运动,后人将之称为布朗运动。

布朗运动

1848年,焦耳在赫拉派斯工作的基础上,测量了很多气体的分子速度。在焦耳的推动下,分子运动论开始被科学界重视。1848年,威廉·汤姆森(第一代开尔文勋爵)在《关于一种绝对温标》中提出了需要一种“绝对的冷”(绝对零度)作为零点的温标,使用摄氏温标计量,威廉·汤姆森利用空气温度计测算出绝对零度为−273 °C

第一代开尔文勋爵:威廉·汤姆森

1859年,詹姆斯·克拉克·麦克斯韦用概率论证明了平衡态下,理想气体分子的速度分布是有规律的,这个规律称为麦克斯韦速度分布律,并给出了它的分布函数表达式。1905年,爱因斯坦除了发表著名狭义相对论以外,还发表了《关于热的分子运动论所要求的静止液体中悬浮小粒子的运动》,阐述了布朗运动的微粒,它的扩散将会以一个特定的速率(称为均方位移)移动,而这速度取决于单位摩尔流体中的原子或分子的数量。1954年,第10届国际计量大会(CGPM)的第3号决议标定了热力学温标的现代定义,以水的三相点为其第二定义点,并规定将其温度修订为273.15K。

上文是温度的本质-分子热运动的流水账,从这个过程中,我们了解了摄氏温标的由来,以及绝对零度的概念,还有分子运动论的起源,当然另一层含义是绝对零度是测算出来的。

如何达到绝对零度?

前文我们了解了温度是由微观粒子运动引起的。那么何为温度高低呢?微观粒子运动运动越剧烈表示温度越高,相反则温度越低,那么问题来了,我们是不是能制造一个不运动的微观粒子呢?当然目的是制造最低温度?

当然理论上是可以的,但事实上却无法达到,因为没有一种手段可以让微观粒子的运动完全停止。现代能制造最低温度的设备是NASA的冷原子云实验室(CAL),一个类似冰箱大小的设备,于2018年5月21日被送到了国际空间站,在微重力的条件下展开激光制冷的实验。

激光制冷:利用激光的多普勒制冷方式,每次以频移欺骗原子,受激发的原子跌落基态会释放吸收的能量,这个释放能量大于吸收能量,每次操作都会让原子失去能量,从而达到制冷的目的。

但即使如此,激光制冷仍然只能达到-273.1499999999 ℃,但距离绝对零度仍然有一步之遥!

总结

我们了解了温度的历史与接近绝对零度的一种方式,为什么绝对零度是-273.15℃这是由一个大气压下冰水混合所定义的0℃的时候所决定的,以此时的0℃为标准,我们通过此时的微观粒子运动剧烈程度计算出运动静止时的温度是-273.15℃,如果要重新定义绝对零度为-300℃,这完全没有问题,毕竟微观粒子停止运动时的标定是不会变的,取什么名字,那是国际计量委员会的问题。


星辰大海路上的种花家


绝对零度,是热力学的最低温度,但只是理论上的下限值。热力学温标的单位是开尔文(K),绝对零度就是开尔文温度标(简称开氏温度标,记为K)定义的零点。0K约等于摄氏温标零下273.15摄氏度,也就是0开氏度,在此温度下,物体分子没有动能和势能,动势能为0,故此时物体内能为0。

那为什么宇宙最低温度也就是绝对零度是-273度左右?为什么不是-300度呢?绝对零度是根据理想气体所遵循的规律也就是理想气体状态方程用外推的方法得到的。用这样的方法,当温度降低到-273.15℃时,气体的体积将减小到零。

所以这是一个根据理论公式通过计算得到的数值,由德国、美国、奥地利等国科学家组成的一个国际科研小组在实验室内创造了仅仅比绝对零度高0.5纳开尔文的温度纪录,而此前的纪录是比绝对零度高3纳开。这是人类历史上首次达到绝对零度以上1纳开以内的极端低温。

(开尔文与摄氏度的换算关系为: 开尔文(K)=273.15+摄氏度(T),1纳开等于十亿分之一开尔文)

智利天文学家发现了宇宙最冷之地,这个宇宙最冷之地就叫做“回力棒星云”,那里的温度为零下272摄氏度,是目前所知自然界中最寒冷的地方,称为“宇宙冰盒子”。

因为宇宙绝对不可能达到绝对零度,所以1912年,1912 年, 能斯特根据他所提出的热定理推论, 得出:绝对零度不可能达到。叙述成定律的形式为:“ 不可能应用有限个方法使物系的温度达到绝对零度,也就是热力学第三定律。你也可以通过热力学第二定律也就是熵增定律推出:

“在绝对零度下任何纯粹物质完整晶体的熵等于零”。即
式中
——熵变化值;
——定温过程