腸道菌群和非酒精性脂肪肝

原創 MNT 醫學營養MNT 3月23日


1、


非酒精性脂肪肝(NAFLD)是一種常見的肝臟疾病,其發病率在全球範圍內呈上升趨勢,估計患病率約為25%~30%,NAFLD 通常無症狀,並與代謝綜合徵的其他表現有關。多達25%的NAFLD患者會發展為進行性炎症性肝臟疾病,稱為非酒精性脂肪性肝炎(NASH),可能會發展為肝硬化、肝癌和需要肝移植的趨勢。


2、


腸道菌群代表了一個重要的環境因素,有助於NAFLD的發展及其向NASH的發展。與NAFLD和NASH相關的微生物組相關機制包括營養不良引起的腸道內皮屏障功能失調,從而促進全身細菌移位以及腸和肝炎症。此外,腸道菌群調節的代謝產物,例如脂多糖、短鏈脂肪酸(SCFA)、膽汁酸和乙醇等的增加,可能通過多種直接和間接機制影響肝臟病理。


3、


腸道宿主與微生物組的相互作用在NAFLD和NASH的發病機理和進程中起著不同的作用。闡明這些微生物影響NAFLD和NASH發病機制的機制可能有助於確定這些常見代謝性肝病的新診斷和治療目標。


腸道菌群對NAFLD影響的機制


對於微生物組在NAFLD 及其併發症中的作用,已經提出了幾種機制。這些包括微生物組對腸道屏障和炎症反應的調節,以及由微生物群產生或修飾的代謝物,如SCFA,膽汁酸和乙醇(圖1)。


腸道菌群和非酒精性脂肪肝


圖1:腸道菌群對NAFLD 發育和發展為NASH的影響的建議機制。

細菌代謝產物(例如SCFA和膽汁酸)可能有效參與正常的肝功能,並減少肝臟脂肪生成和炎症。共生微生物組組成,多樣性和功能的異常可能導致腸道通透性增加,LPS和其他炎性因子的產生,膽汁酸的減少的多樣性以及乙醇的產生。所有這些代謝物和因素與飲食中產生的脂質結合會導致肝臟脂肪變性,炎症和損害,可能導致肝纖維化,疤痕和NASH的發展。


資料來源


腸道菌群和非酒精性脂肪肝


Molecular Metabolism

Volume 5, Issue 9, September 2016, Pages 782-794

ID:dx.doi.org/10.1016/j.molmet.2016.06.003


參考文獻


[1]

Z.M. Younossi, A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, M. Wymer

Global epidemiology of non-alcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence and outcomes

Hepatology (Dec 28 2015)


[2]

M.E. Rinella

Nonalcoholic fatty liver disease: a systematic review

Journal of the American Medical Association, 313 (22) (Jun 9 2015), pp. 2263-2273


[3]

K. Das, K. Das, P.S. Mukherjee, A. Ghosh, S. Ghosh, A.R. Mridha, et al.

Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease

Hepatology, 51 (5) (May 2010), pp. 1593-1602


[4]

J. Ampuero, I. Ranchal, R. Gallego-Duran, M.J. Pareja, J.A. Del Campo, H. Pastor-Ramirez, et al.

Oxidized LDL antibodies/HDL-c ratio is linked to advanced disease in NAFLD lean patients

Journal of Gastroenterology and Hepatology (Mar 6 2016)


[5]

K.E. Corey, M.E. Rinella

Medical and surgical treatment options for nonalcoholic steatohepatitis

Digestive Diseases and Sciences, 61 (5) (May 2016), pp. 1387-1397


[6]

B. Lam, Z.M. Younossi

Treatment options for nonalcoholic fatty liver disease

Therapeutic Advances in Gastroenterology, 3 (2) (Mar 2010), pp. 121-137


[7]

T. Smallwood, H. Allayee, B.J. Bennett

Choline metabolites: gene by diet interactions

Current Opinion in Lipidology, 27 (1) (Feb 2016), pp. 33-39


[8]

A. Al Rajabi, G.S. Castro, R.P. da Silva, R.C. Nelson, A. Thiesen, H. Vannucchi, et al.

Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet

Journal of Nutrition, 144 (3) (Mar 2014), pp. 252-257


[9]

K.S. Collison, S.M. Saleh, R.H. Bakheet, R.K. Al-Rabiah, A.L. Inglis, N.J. Makhoul, et al.

Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55

Obesity (Silver Spring), 17 (11) (Nov 2009), pp. 2003-2013


[10]

J. Veena, A. Muragundla, S. Sidgiddi, S. Subramaniam

Non-alcoholic fatty liver disease: need for a balanced nutritional source

British Journal of Nutrition, 112 (11) (Dec 14 2014), pp. 1858-1872


[11]

E. Smagris, S. BasuRay, J. Li, Y. Huang, K.M. Lai, J. Gromada, et al.

Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis

Hepatology, 61 (1) (Jan 2015), pp. 108-118


[12]

S. Romeo, J. Kozlitina, C. Xing, A. Pertsemlidis, D. Cox, L.A. Pennacchio, et al.

Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease

Nature Genetics, 40 (12) (Dec 2008), pp. 1461-1465


[13]

S. Sookoian, C.J. Pirola

Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease

Hepatology, 53 (6) (Jun 2011), pp. 1883-1894


[14]

C.J. Walkey, L. Yu, L.B. Agellon, D.E. Vance

Biochemical and evolutionary significance of phospholipid methylation

Journal of Biological Chemistry, 273 (42) (Oct 16 1998), pp. 27043-27046


[15]

K.A. Waite, N.R. Cabilio, D.E. Vance

Choline deficiency-induced liver damage is reversible in Pemt(-/-) mice

Journal of Nutrition, 132 (1) (Jan 2002), pp. 68-71


[16]

J. Song, K.A. da Costa, L.M. Fischer, M. Kohlmeier, L. Kwock, S. Wang, et al.

Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD)

FASEB Journal, 19 (10) (Aug 2005), pp. 1266-1271


[17]

E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, et al.

Initial sequencing and analysis of the human genome

Nature, 409 (6822) (Feb 15 2001), pp. 860-921


[18]

D.A. Relman, S. Falkow

The meaning and impact of the human genome sequence for microbiology

Trends in Microbiology, 9 (5) (May 2001), pp. 206-208


[19]

J.F. Rawls, M.A. Mahowald, R.E. Ley, J.I. Gordon

Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection

Cell, 127 (2) (Oct 20 2006), pp. 423-433


[20]

F. Backhed, J.K. Manchester, C.F. Semenkovich, J.I. Gordon

Mechanisms underlying the resistance to diet-induced obesity in germ-free mice

Proceedings of the National Academy of Sciences of the United States of America, 104 (3) (Jan 16 2007), pp. 979-984


[21]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, V. Magrini, E.R. Mardis, J.I. Gordon

An obesity-associated gut microbiome with increased capacity for energy harvest

Nature, 444 (7122) (Dec 21 2006), pp. 1027-1031


[22]

H.J. Flint, K.P. Scott, S.H. Duncan, P. Louis, E. Forano

Microbial degradation of complex carbohydrates in the gut

Gut Microbes, 3 (4) (Jul–Aug 2012), pp. 289-306


[23]

N. Kamada, G.Y. Chen, N. Inohara, G. Nunez

Control of pathogens and pathobionts by the gut microbiota

Nature Immunology, 14 (7) (Jul 2013), pp. 685-690


[24]

A.L. Kau, P.P. Ahern, N.W. Griffin, A.L. Goodman, J.I. Gordon

Human nutrition, the gut microbiome and the immune system

Nature, 474 (7351) (Jun 16 2011), pp. 327-336


[25]

M. Yamamoto, R. Yamaguchi, K. Munakata, K. Takashima, M. Nishiyama, K. Hioki, et al.

A microarray analysis of gnotobiotic mice indicating that microbial exposure during the neonatal period plays an essential role in immune system development

BMC Genomics, 13 (2012), p. 335


[26]

Human Microbiome Project Consortium

Structure, function and diversity of the healthy human microbiome

Nature, 486 (7402) (Jun 14 2012), pp. 207-214


[27]

P.J. Turnbaugh, M. Hamady, T. Yatsunenko, B.L. Cantarel, A. Duncan, R.E. Ley, et al.

A core gut microbiome in obese and lean twins

Nature, 457 (7228) (Jan 22 2009), pp. 480-484


[28]

M. Arumugam, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D.R. Mende, et al.

Enterotypes of the human gut microbiome

Nature, 473 (7346) (May 12 2011), pp. 174-180


[29]

D.N. Frank, A.L. St Amand, R.A. Feldman, E.C. Boedeker, N. Harpaz, N.R. Pace

Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases

Proceedings of the National Academy of Sciences of the United States of America, 104 (34) (Aug 21 2007), pp. 13780-13785


[30]

N. Larsen, F.K. Vogensen, F.W. van den Berg, D.S. Nielsen, A.S. Andreasen, B.K. Pedersen, et al.

Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults

PloS One, 5 (2) (2010), p. e9085


[31]

F. Wang, J.L. Kaplan, B.D. Gold, M.K. Bhasin, N.L. Ward, R. Kellermayer, et al.

Detecting microbial dysbiosis associated with pediatric Crohn disease despite the high variability of the gut microbiota

Cell Reports, 14 (4) (Feb 2 2016), pp. 945-955


[32]

Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, et al.

Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

Nature, 472 (7341) (Apr 7 2011), pp. 57-63


[33]

K. Brown, A. Godovannyi, C. Ma, Y. Zhang, Z. Ahmadi-Vand, C. Dai, et al.

Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice

ISME Journal, 10 (2) (Feb 2016), pp. 321-332


[34]

D.H. Reikvam, A. Erofeev, A. Sandvik, V. Grcic, F.L. Jahnsen, P. Gaustad, et al.

Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression

PloS One, 6 (3) (2011), p. e17996


[35]

V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, et al.

Gut microbiota from twins discordant for obesity modulate metabolism in mice

Science, 341 (6150) (Sep 6 2013), p. 1241214


[36]

F. Backhed, H. Ding, T. Wang, L.V. Hooper, G.Y. Koh, A. Nagy, et al.

The gut microbiota as an environmental factor that regulates fat storage

Proceedings of the National Academy of Sciences of the United States of America, 101 (44) (Nov 2 2004), pp. 15718-15723


[37]

R. Caesar, V. Tremaroli, P. Kovatcheva-Datchary, P.D. Cani, F. Backhed

Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling

Cell Metabolism, 22 (4) (Oct 6 2015), pp. 658-668


[38]

R.E. Ley, P.J. Turnbaugh, S. Klein, J.I. Gordon

Microbial ecology: human gut microbes associated with obesity

Nature, 444 (7122) (Dec 21 2006), pp. 1022-1023


[39]

A. Schwiertz, D. Taras, K. Schafer, S. Beijer, N.A. Bos, C. Donus, et al.

Microbiota and SCFA in lean and overweight healthy subjects

Obesity (Silver Spring), 18 (1) (Jan 2010), pp. 190-195


[40]

H. Zhang, J.K. DiBaise, A. Zuccolo, D. Kudrna, M. Braidotti, Y. Yu, et al.

Human gut microbiota in obesity and after gastric bypass

Proceedings of the National Academy of Sciences of the United States of America, 106 (7) (Feb 17 2009), pp. 2365-2370


[41]

S.R. Abdel-Misih, M. Bloomston

Liver anatomy

Surgical Clinics of North America, 90 (4) (Aug 2010), pp. 643-653


[42]

A. Abu-Shanab, E.M. Quigley

The role of the gut microbiota in nonalcoholic fatty liver disease

Nature Reviews Gastroenterology & Hepatology, 7 (12) (Dec 2010), pp. 691-701


[43]

E.J. Drenick, J. Fisler, D. Johnson

Hepatic steatosis after intestinal bypass – prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition

Gastroenterology, 82 (3) (Mar 1982), pp. 535-548


[44]

A.J. Wigg, I.C. Roberts-Thomson, R.B. Dymock, P.J. McCarthy, R.H. Grose, A.G. Cummins

The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis

Gut, 48 (2) (Feb 2001), pp. 206-211


[45]

S. Rabot, M. Membrez, A. Bruneau, P. Gerard, T. Harach, M. Moser, et al.

Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism

FASEB Journal, 24 (12) (Dec 2010), pp. 4948-4959


[46]

T. Le Roy, M. Llopis, P. Lepage, A. Bruneau, S. Rabot, C. Bevilacqua, et al.

Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice

Gut, 62 (12) (Dec 2013), pp. 1787-1794


[47]

J. Henao-Mejia, E. Elinav, C. Jin, L. Hao, W.Z. Mehal, T. Strowig, et al.

Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity

Nature, 482 (7384) (Feb 9 2012), pp. 179-185


[48]

H. Zeng, J. Liu, M.I. Jackson, F.Q. Zhao, L. Yan, G.F. Combs Jr.

Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet

Journal of Nutrition, 143 (5) (May 2013), pp. 627-631


[49]

G.D. Wu, J. Chen, C. Hoffmann, K. Bittinger, Y.Y. Chen, S.A. Keilbaugh, et al.

Linking long-term dietary patterns with gut microbial enterotypes

Science, 334 (6052) (Oct 7 2011), pp. 105-108


[50]

D. Zeevi, T. Korem, N. Zmora, D. Israeli, D. Rothschild, A. Weinberger, et al.

Personalized nutrition by prediction of glycemic responses

Cell, 163 (5) (Nov 19 2015), pp. 1079-1094


[51]

B. Schnabl, D.A. Brenner

Interactions between the intestinal microbiome and liver diseases

Gastroenterology, 146 (6) (May 2014), pp. 1513-1524


[52]

S. Michail, M. Lin, M.R. Frey, R. Fanter, O. Paliy, B. Hilbush, et al.

Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease

FEMS Microbiology Ecology, 91 (2) (Feb 2015), pp. 1-9


[53]

M.D. Spencer, T.J. Hamp, R.W. Reid, L.M. Fischer, S.H. Zeisel, A.A. Fodor

Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency

Gastroenterology, 140 (3) (Mar 2011), pp. 976-986


[54]

W. Jiang, N. Wu, X. Wang, Y. Chi, Y. Zhang, X. Qiu, et al.

Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease

Scientific Reports, 5 (2015), p. 8096


[55]

M. Raman, I. Ahmed, P.M. Gillevet, C.S. Probert, N.M. Ratcliffe, S. Smith, et al.

Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease

Clinical Gastroenterology and Hepatology, 11 (7) (Jul 2013), pp. 868-875

e861–863


[56]

L. Zhu, S.S. Baker, C. Gill, W. Liu, R. Alkhouri, R.D. Baker, et al.

Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH

Hepatology, 57 (2) (Feb 2013), pp. 601-609


[57]

M. Mouzaki, E.M. Comelli, B.M. Arendt, J. Bonengel, S.K. Fung, S.E. Fischer, et al.

Intestinal microbiota in patients with nonalcoholic fatty liver disease

Hepatology, 58 (1) (Jul 2013), pp. 120-127


[58]

V.W. Wong, G.L. Wong, H.Y. Chan, D.K. Yeung, R.S. Chan, A.M. Chim, et al.

Bacterial endotoxin and non-alcoholic fatty liver disease in the general population: a prospective cohort study

Alimentary Pharmacology & Therapeutics, 42 (6) (Sep 2015), pp. 731-740


[59]

J. Boursier, O. Mueller, M. Barret, M. Machado, L. Fizanne, F. Araujo-Perez, et al.

The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota

Hepatology, 63 (3) (Mar 2016), pp. 764-775


[60]

M.G. Langille, J. Zaneveld, J.G. Caporaso, D. McDonald, D. Knights, J.A. Reyes, et al.

Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

Nature Biotechnology, 31 (9) (Sep 2013), pp. 814-821


[61]

N.R. Klatt, N.T. Funderburg, J.M. Brenchley

Microbial translocation, immune activation, and HIV disease

Trends in Microbiology, 21 (1) (Jan 2013), pp. 6-13


[62]

L.W. Peterson, D. Artis

Intestinal epithelial cells: regulators of barrier function and immune homeostasis

Nature Reviews. Immunology, 14 (3) (Mar 2014), pp. 141-153


[63]

J.M. Brenchley, D.C. Douek

HIV infection and the gastrointestinal immune system

Mucosal Immunology, 1 (1) (Jan 2008), pp. 23-30


[64]

K. Honda, D.R. Littman

The microbiome in infectious disease and inflammation

Annual Review of Immunology, 30 (2012), pp. 759-795


[65]

L. Miele, V. Valenza, G. La Torre, M. Montalto, G. Cammarota, R. Ricci, et al.

Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease

Hepatology, 49 (6) (Jun 2009), pp. 1877-1887


[66]

V. Giorgio, L. Miele, L. Principessa, F. Ferretti, M.P. Villa, V. Negro, et al.

Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity

Digestive and Liver Disease, 46 (6) (Jun 2014), pp. 556-560


[67]

A. Everard, P.D. Cani

Diabetes, obesity and gut microbiota

Best Practice & Research. Clinical Gastroenterology, 27 (1) (Feb 2013), pp. 73-83


[68]

V. Tremaroli, F. Backhed

Functional interactions between the gut microbiota and host metabolism

Nature, 489 (7415) (Sep 13 2012), pp. 242-249


[69]

P. Brun, I. Castagliuolo, V. Di Leo, A. Buda, M. Pinzani, G. Palu, et al.

Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis

American Journal of Physiology. Gastrointestinal and Liver Physiology, 292 (2) (Feb 2007), pp. G518-G525


[70]

C. Llorente, B. Schnabl

The gut microbiota and liver disease

Cellular and Molecular Gastroenterology and Hepatology, 1 (3) (May 1 2015), pp. 275-284


[71]

E. Gabele, K. Dostert, C. Hofmann, R. Wiest, J. Scholmerich, C. Hellerbrand, et al.

DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH

Journal of Hepatology, 55 (6) (Dec 2011), pp. 1391-1399


[72]

J. Luther, J.J. Garber, H. Khalili, M. Dave, S.S. Bale, R. Jindal, et al.

Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability

Cellular and Molecular Gastroenterology and Hepatology, 1 (2) (Mar 2015), pp. 222-232


[73]

K. Miura, H. Ohnishi

Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease

World Journal of Gastroenterology, 20 (23) (Jun 21 2014), pp. 7381-7391


[74]

N. Nakamoto, T. Kanai

Role of toll-like receptors in immune activation and tolerance in the liver

Frontiers in Immunology, 5 (2014), p. 221


[75]

T. Csak, M. Ganz, J. Pespisa, K. Kodys, A. Dolganiuc, G. Szabo

Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells

Hepatology, 54 (1) (Jul 2011), pp. 133-144


[76]

L.J. Dixon, M. Berk, S. Thapaliya, B.G. Papouchado, A.E. Feldstein

Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis

Laboratory Investigation, 92 (5) (May 2012), pp. 713-723


[77]

G. Yang, H.E. Lee, J.Y. Lee

A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet

Scientific Reports, 6 (2016), p. 24399


[78]

H. Shapiro, C.A. Thaiss, M. Levy, E. Elinav

The cross talk between microbiota and the immune system: metabolites take center stage

Current Opinion in Immunology, 30 (Oct 2014), pp. 54-62


[79]

M.G. Rooks, W.S. Garrett

Gut microbiota, metabolites and host immunity

Nature Reviews. Immunology, 16 (6) (May 27 2016), pp. 341-352


[80]

M. Levy, C.A. Thaiss, D. Zeevi, L. Dohnalova, G. Zilberman-Schapira, J.A. Mahdi, et al.

Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling

Cell, 163 (6) (Dec 3 2015), pp. 1428-1443


[81]

W. Zhu, J.C. Gregory, E. Org, J.A. Buffa, N. Gupta, Z. Wang, et al.

Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk

Cell, 165 (1) (Mar 24 2016), pp. 111-124


[82]

C.R. Raetz, C. Whitfield

Lipopolysaccharide endotoxins

Annual Review of Biochemistry, 71 (2002), pp. 635-700


[83]

L.J. Dixon, M. Barnes, H. Tang, M.T. Pritchard, L.E. Nagy

Kupffer cells in the liver

Comprehensive Physiology, 3 (2) (Apr 2013), pp. 785-797


[84]

K. Asehnoune, D. Strassheim, S. Mitra, J.Y. Kim, E. Abraham

Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B

Journal of Immunology, 172 (4) (Feb 15 2004), pp. 2522-2529


[85]

Y.C. Lu, W.C. Yeh, P.S. Ohashi

LPS/TLR4 signal transduction pathway

Cytokine, 42 (2) (May 2008), pp. 145-151


[86]

P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, et al.

Metabolic endotoxemia initiates obesity and insulin resistance

Diabetes, 56 (7) (Jul 2007), pp. 1761-1772


[87]

C.A. Rivera, P. Adegboyega, N. van Rooijen, A. Tagalicud, M. Allman, M. Wallace

Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis

Journal of Hepatology, 47 (4) (Oct 2007), pp. 571-579


[88]

P.D. Cani, R. Bibiloni, C. Knauf, A. Waget, A.M. Neyrinck, N.M. Delzenne, et al.

Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice

Diabetes, 57 (6) (Jun 2008), pp. 1470-1481


[89]

A.L. Harte, N.F. da Silva, S.J. Creely, K.C. McGee, T. Billyard, E.M. Youssef-Elabd, et al.

Elevated endotoxin levels in non-alcoholic fatty liver disease

Journal of Inflammation (London), 7 (2010), p. 15


[90]

N.N. Mehta, F.C. McGillicuddy, P.D. Anderson, C.C. Hinkle, R. Shah, L. Pruscino, et al.

Experimental endotoxemia induces adipose inflammation and insulin resistance in humans

Diabetes, 59 (1) (Jan 2010), pp. 172-181


[91]

K.E. Bach Knudsen

Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health

Advances in Nutrition, 6 (2) (Mar 2015), pp. 206-213


[92]

F. De Vadder, P. Kovatcheva-Datchary, D. Goncalves, J. Vinera, C. Zitoun, A. Duchampt, et al.

Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits

Cell, 156 (1–2) (Jan 16 2014), pp. 84-96


[93]

G. den Besten, K. van Eunen, A.K. Groen, K. Venema, D.J. Reijngoud, B.M. Bakker

The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism

Journal of Lipid Research, 54 (9) (Sep 2013), pp. 2325-2340


[94]

E. Puertollano, S. Kolida, P. Yaqoob

Biological significance of short-chain fatty acid metabolism by the intestinal microbiome

Current Opinion in Clinical Nutrition & Metabolic Care, 17 (2) (Mar 2014), pp. 139-144


[95]

I. Kimura, K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, et al.

The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43

Nature Communications, 4 (2013), p. 1829


[96]

K.M. Maslowski, A.T. Vieira, A. Ng, J. Kranich, F. Sierro, D. Yu, et al.

Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43

Nature, 461 (7268) (Oct 29 2009), pp. 1282-1286


[97]

J.M. Ridlon, D.J. Kang, P.B. Hylemon

Bile salt biotransformations by human intestinal bacteria

Journal of Lipid Research, 47 (2) (Feb 2006), pp. 241-259


[98]

C. Thomas, R. Pellicciari, M. Pruzanski, J. Auwerx, K. Schoonjans

Targeting bile-acid signalling for metabolic diseases

Nature Reviews Drug Discovery, 7 (8) (Aug 2008), pp. 678-693


[99]

J.Y. Chiang

Bile acids: regulation of synthesis

Journal of Lipid Research, 50 (10) (Oct 2009), pp. 1955-1966


[100]

C. Thomas, A. Gioiello, L. Noriega, A. Strehle, J. Oury, G. Rizzo, et al.

TGR5-mediated bile acid sensing controls glucose homeostasis

Cell Metabolism, 10 (3) (Sep 2009), pp. 167-177


[101]

S.P. Claus, T.M. Tsang, Y. Wang, O. Cloarec, E. Skordi, F.P. Martin, et al.

Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes Molecular Systems Biology, 4 (2008), p. 219


[102]

H. Kuribayashi, M. Miyata, H. Yamakawa, K. Yoshinari, Y. Yamazoe

Enterobacteria-mediated deconjugation of taurocholic acid enhances ileal farnesoid X receptor signaling

European Journal of Pharmacology, 697 (1–3) (Dec 15 2012), pp. 132-138


[103]

S.I. Sayin, A. Wahlstrom, J. Felin, S. Jantti, H.U. Marschall, K. Bamberg, et al.

Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist

Cell Metabolism, 17 (2) (Feb 5 2013), pp. 225-235


[104]

J.R. Swann, E.J. Want, F.M. Geier, K. Spagou, I.D. Wilson, J.E. Sidaway, et al.

Systemic gut microbial modulation of bile acid metabolism in host tissue compartments Proceedings of the National Academy of Sciences of the United States of America, 108 (Suppl 1) (Mar 15 2011), pp. 4523-4530


[105]

F.Y. Lee, H. Lee, M.L. Hubbert, P.A. Edwards, Y. Zhang

FXR, a multipurpose nuclear receptor

Trends in Biochemical Sciences, 31 (10) (Oct 2006), pp. 572-580


[106]

L. Yuan, K. Bambha

Bile acid receptors and nonalcoholic fatty liver disease

World Journal of Hepatology, 7 (28) (Dec 8 2015), pp. 2811-2818


[107]

W. Huang, K. Ma, J. Zhang, M. Qatanani, J. Cuvillier, J. Liu, et al.

Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration Science, 312 (5771) (Apr 14 2006), pp. 233-236


[108]

S. Cipriani, A. Mencarelli, G. Palladino, S. Fiorucci

FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats

Journal of Lipid Research, 51 (4) (Apr 2010), pp. 771-784


[109]

T.Q. de Aguiar Vallim, E.J. Tarling, P.A. Edwards

Pleiotropic roles of bile acids in metabolism

Cell Metabolism, 17 (5) (May 7 2013), pp. 657-669


[110]

B.A. Neuschwander-Tetri, R. Loomba, A.J. Sanyal, J.E. Lavine, M.L. Van Natta, M.F. Abdelmalek, et al.

Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial Lancet, 385 (9972) (Mar 14 2015), pp. 956-965


[111]

B. Cariou

The farnesoid X receptor (FXR) as a new target in non-alcoholic steatohepatitis

Diabetes & Metabolism, 34 (6 Pt 2) (Dec 2008), pp. 685-691


[112]

J. Prawitt, M. Abdelkarim, J.H. Stroeve, I. Popescu, H. Duez, V.R. Velagapudi, et al.

Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity

Diabetes, 60 (7) (Jul 2011), pp. 1861-1871


[113]

C.J. Sinal, M. Tohkin, M. Miyata, J.M. Ward, G. Lambert, F.J. Gonzalez

Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis

Cell, 102 (6) (Sep 15 2000), pp. 731-744


[114]

Y. Zhang, F.Y. Lee, G. Barrera, H. Lee, C. Vales, F.J. Gonzalez, et al.

Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice

Proceedings of the National Academy of Sciences of the United States of America, 103 (4) (Jan 24 2006), pp. 1006-1011


[115]

M. Watanabe, Y. Horai, S.M. Houten, K. Morimoto, T. Sugizaki, E. Arita, et al.

Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure

Journal of Biological Chemistry, 286 (30) (Jul 29 2011), pp. 26913-26920


[116]

S.M. Houten, D.H. Volle, C.L. Cummins, D.J. Mangelsdorf, J. Auwerx

In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue

Molecular Endocrinology, 21 (6) (Jun 2007), pp. 1312-1323


[117]

C. Jiang, C. Xie, Y. Lv, J. Li, K.W. Krausz, J. Shi, et al.

Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction

Nature Communications, 6 (2015), p. 10166


[118]

C. Jiang, C. Xie, F. Li, L. Zhang, R.G. Nichols, K.W. Krausz, et al.

Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease

Journal of Clinical Investigation, 125 (1) (Jan 2015), pp. 386-402


[119]

S. Fang, J.M. Suh, S.M. Reilly, E. Yu, O. Osborn, D. Lackey, et al.

Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

Nature Medicine, 21 (2) (Feb 2015), pp. 159-165


[120]

K.K. Ryan, V. Tremaroli, C. Clemmensen, P. Kovatcheva-Datchary, A. Myronovych, R. Karns, et al.

FXR is a molecular target for the effects of vertical sleeve gastrectomy

Nature, 509 (7499) (May 8 2014), pp. 183-188


[121]

M. Mouzaki, A.Y. Wang, R. Bandsma, E.M. Comelli, B.M. Arendt, L. Zhang, et al.

Bile acids and dysbiosis in non-alcoholic fatty liver disease

PloS One, 11 (5) (2016), p. e0151829


[122]

V. Volynets, M.A. Kuper, S. Strahl, I.B. Maier, A. Spruss, S. Wagnerberger, et al.

Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD)

Digestive Diseases and Sciences, 57 (7) (Jul 2012), pp. 1932-1941


[123]

M. Yang, S. Gong, S.Q. Ye, B. Lyman, L. Geng, P. Chen, et al.

Non-alcoholic fatty liver disease in children: focus on nutritional interventions

Nutrients, 6 (11) (Nov 2014), pp. 4691-4705


[124]

N. Chalasani, Z. Younossi, J.E. Lavine, A.M. Diehl, E.M. Brunt, K. Cusi, et al.

The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association

Hepatology, 55 (6) (Jun 2012), pp. 2005-2023


[125]

T. Eslamparast, S. Eghtesad, H. Poustchi, A. Hekmatdoost

Recent advances in dietary supplementation, in treating non-alcoholic fatty liver disease World Journal of Hepatology, 7 (2) (Feb 27 2015), pp. 204-212


[126]

L. Dethlefsen, S. Huse, M.L. Sogin, D.A. Relman

The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing

PLoS Biology, 6 (11) (Nov 18 2008), p. e280


[127]

L. Dethlefsen, D.A. Relman

Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation

Proceedings of the National Academy of Sciences of the United States of America, 108 (Suppl 1) (Mar 15 2011), pp. 4554-4561


[128]

I. Bergheim, S. Weber, M. Vos, S. Kramer, V. Volynets, S. Kaserouni, et al.

Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin

Journal of Hepatology, 48 (6) (Jun 2008), pp. 983-992


[129]

M.B. Vos, J.E. Lavine

Dietary fructose in nonalcoholic fatty liver disease

Hepatology, 57 (6) (Jun 2013), pp. 2525-2531


[130]

A.M. Madrid, C. Hurtado, M. Venegas, F. Cumsille, C. Defilippi

Long-term treatment with cisapride and antibiotics in liver cirrhosis: effect on small intestinal motility, bacterial overgrowth, and liver function

American Journal of Gastroenterology, 96 (4) (Apr 2001), pp. 1251-1255


[131]

A. Soza, A. Riquelme, R. GonzÁlez, M. Alvarez, R.M. PÉrez-ayuso, J.C. Glasinovic, et al.Increased orocecal transit time in patients with nonalcoholic fatty liver disease Digestive Diseases and Sciences, 50 (6) (2005), pp. 1136-1140


[132]

M.G. Gareau, P.M. Sherman, W.A. Walker

Probiotics and the gut microbiota in intestinal health and disease

Nature Reviews Gastroenterology & Hepatology, 7 (9) (Sep 2010), pp. 503-514


[133]

G. Paolella, C. Mandato, L. Pierri, M. Poeta, M. Di Stasi, P. Vajro

Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease

World Journal of Gastroenterology, 20 (42) (Nov 14 2014), pp. 15518-15531


[134]

C. Loguercio, T. De Simone, A. Federico, F. Terracciano, C. Tuccillo, M. Di Chicco, et al.Gut-liver axis: a new point of attack to treat chronic liver damage?

American Journal of Gastroenterology, 97 (8) (Aug 2002), pp. 2144-2146


[135]

Z. Li, S. Yang, H. Lin, J. Huang, P.A. Watkins, A.B. Moser, et al.

Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease

Hepatology, 37 (2) (Feb 2003), pp. 343-350


[136]

V.W. Wong, C.H. Tse, T.T. Lam, G.L. Wong, A.M. Chim, W.C. Chu, et al.

Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis – a longitudinal study

PloS One, 8 (4) (2013), p. e62885


[137]

X. Gao, Y. Zhu, Y. Wen, G. Liu, C. Wan

Efficacy of probiotics in nonalcoholic fatty liver disease in adult and children: a meta-analysis of randomized controlled trials Hepatology Research (Feb 11 2016)


[138]

Y.Y. Ma, L. Li, C.H. Yu, Z. Shen, L.H. Chen, Y.M. Li

Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis

World Journal of Gastroenterology, 19 (40) (Oct 28 2013), pp. 6911-6918


[139]

F. Del Chierico, V. Nobili, P. Vernocchi, A. Russo, C. De Stefanis, D. Gnani, et al.

Gut microbiota profiling of pediatric NAFLD and obese patients unveiled by an integrated meta-omics based approach

Hepatology (Mar 29 2016)


分享到:


相關文章: