自動曝光修復算法附完整C代碼

眾所周知,

圖像方面的3A算法有:

AF自動對焦(Automatic Focus)

自動對焦即調節攝像頭焦距自動得到清晰的圖像的過程

AE自動曝光(Automatic Exposure)

自動曝光的是為了使感光器件獲得合適的曝光量

AW自動白平衡(Automatic White Balance)

白平衡的本質是使白色物體在任何光源下都顯示白色

前面的文章也有提及過,在剛開始做圖像算法的時候,我是先攻克的自動白平衡算法。

後來攻克自動曝光的時候,傻啦吧唧的,踩了不少坑。

我相信一定不止我一個,一開始的時候抱著對圖像均衡化,

軟磨硬泡,想要做出兼顧自動曝光和自動白平衡的算法。

可惜,圖像均衡化去做白平衡或者自動曝光,這條路是錯的。

嚴格意義上來說,圖像均衡化是拉伸曲線,這種做法有個弊端。

它沒有考慮到圖像的空間信息,也就是局部信息。

當然如果是處理音頻之類的算法,肯定要考慮時間信息,因為數據是時序性為主的。

而圖像,明顯是空間信息為主的。

所以從理論上來說,用拉伸曲線這種不具備空間信息的操作,來做空間信息處理的事情,是不科學的。

我記得這博客剛開始寫的時候,好多網友問我,為什麼你要寫那麼多圖像模糊算法,

圖像模糊算法好像很雞肋啊,沒什麼用的吧。

這就大錯特錯了,因為模糊算法是圖像算法中,典型的包含空間信息的全局算法。

也就是說,如果要玩好圖像算法,玩好模糊算法就是標配。

本次分享的算法為《Local Color Correction using Non-Linear Masking》,是ImageShop博主,

彭兄發出來的,安利一下他的博客https://www.cnblogs.com/imageshop 。

這個文章裡的算法比較簡單,

主要是通過圖像模糊獲取局域權重信息,然後映射回圖片上。

matlab代碼如下:

複製代碼

% Read the image

A=imread('input.jpg');

% Seperate the Channels

R=A(:,:,1);

G=A(:,:,2);

B=A(:,:,3);

% Calculate Intensity Component

I=(R+G+B)/3;

% Invert the image

I_inverted=255-I;

% Apply Average Filter to obtain the Mask Image

h_average=fspecial('average',15);

M=imfilter(I_inverted,h_average);

% Color Correction for R channel

R_new=zeros(size(R));

[c_y, c_x,~] = size(R);

for j = 1:c_x

for i = 1:c_y

p=double(R(i,j));

q=double(M(i,j));

R_new(i,j,:)=int8(255*((p/255)^(2^((128-q)/128))));

end

end

% Color Correction for G channel

G_new=zeros(size(G));

[c_y, c_x,~] = size(G);

for j = 1:c_x

for i = 1:c_y

p=double(G(i,j));

q=double(M(i,j));

G_new(i,j,:)=int8(255*((p/255)^(2^((128-q)/128))));

end

end

% Color Correction for B channel

B_new=zeros(size(B));

[c_y, c_x,~] = size(B);

for j = 1:c_x

for i = 1:c_y

p=double(B(i,j));

q=double(M(i,j));

B_new(i,j,:)=int8(255*((p/255)^(2^((128-q)/128))));

end

end

% Output Image

O=zeros(size(A));

O(:,:,1)=R_new;

O(:,:,2)=G_new;

O(:,:,3)=B_new;

% Convert the double output image to uint8

O=uint8(O);

% Plot the images

subplot(1,3,1), imshow(A), title('Original Image');

subplot(1,3,2), imshow(M), title('Mask');

subplot(1,3,3), imshow(O), title('Output Image');

複製代碼

算法步驟很清晰,就不展開了。

有興趣的同學,品讀下論文吧。

論文鏈接直達

這個算法其實只是簡單採用局部信息進行曝光調節,

但是並不能很好的適配很多圖片情景。

需要進行二次改造,

例如: 白平衡,紋理處理更加自然諸如此類,之後就能更加美美噠。

師傅領進門,修行在個人。

改進的思路和方法就不展開一一細說了,

有興趣的同學,可以考慮進一步改進。

效果圖如下:

自動曝光修復算法附完整C代碼

圖1

自動曝光修復算法附完整C代碼

圖2

主要的算法函數實現如下:

複製代碼

void LocalColorCorrection(unsigned char *Input, unsigned char *Output, int Width, int Height, int Channels) {

unsigned char *Mask = (unsigned char *) malloc(Width * Height * sizeof(unsigned char));

if (Mask == NULL)

return;

unsigned char LocalLut[256 * 256];

for (int mask = 0; mask < 256; ++mask) {

unsigned char *pLocalLut = LocalLut + (mask << 8);

for (int pix = 0; pix < 256; ++pix) {

pLocalLut[pix] = ClampToByte(255.0f * powf(pix / 255.0f, powf(2.0f, (128.0f - mask) / 128.0f)));

}

}

InvertGrayscale(Input, Output, Width, Height, Channels);

int Radius = (MAX(Width, Height) / 512) + 1;

BoxBlurGrayscale(Output, Mask, Width, Height, Radius);

for (int Y = 0; Y < Height; Y++) {

unsigned char *pOutput = Output + (Y * Width * Channels);

unsigned char *pInput = Input + (Y * Width * Channels);

unsigned char *pMask = Mask + (Y * Width);

for (int X = 0; X < Width; X++) {

unsigned char *pLocalLut = LocalLut + (pMask[X] << 8);

for (int C = 0; C < Channels; C++) {

pOutput[C] = pLocalLut[pInput[C]];

}

pOutput += Channels;

pInput += Channels;

}

}

free(Mask);

}

複製代碼

做了一些算法性能上的優化,720P,1080P下實時沒半點問題。

至於進一步優化性能和效果,就留待下回分解,

當然有沒有下回,得看心情。

附完整C代碼:

複製代碼

/**

*implmentation of Local Color Correction using Non-Linear Masking published by Nathan Moroney Hewlett-Packard Laboratories, Palo Alto, California.

**/

#include "browse.h"

#define USE_SHELL_OPEN

#define STB_IMAGE_STATIC

#define STB_IMAGE_IMPLEMENTATION

#include "stb_image.h"

/* ref:https://github.com/nothings/stb/blob/master/stb_image.h */

#define TJE_IMPLEMENTATION

#include "tiny_jpeg.h"

/* ref:https://github.com/serge-rgb/TinyJPEG/blob/master/tiny_jpeg.h */

#include

#include

#include

#include "timing.h"

#include

#include

#ifndef _MAX_DRIVE

#define _MAX_DRIVE 3

#endif

#ifndef _MAX_FNAME

#define _MAX_FNAME 256

#endif

#ifndef _MAX_EXT

#define _MAX_EXT 256

#endif

#ifndef _MAX_DIR

#define _MAX_DIR 256

#endif

#ifndef MIN

#define MIN(a, b) ( (a) > (b) ? (b) : (a) )

#endif

#ifndef MAX

#define MAX(a, b) (((a) > (b)) ? (a) : (b))

#endif

char saveFile[1024];

unsigned char *loadImage(const char *filename, int *Width, int *Height, int *Channels) {

return (stbi_load(filename, Width, Height, Channels, 0));

}

void saveImage(const char *filename, int Width, int Height, int Channels, unsigned char *Output) {

memcpy(saveFile + strlen(saveFile), filename, strlen(filename));

*(saveFile + strlen(saveFile) + 1) = 0;

if (!tje_encode_to_file(saveFile, Width, Height, Channels, true, Output)) {

fprintf(stderr, "save JPEG fail.\n");

return;

}

#ifdef USE_SHELL_OPEN

browse(saveFile);

#endif

}

void splitpath(const char *path, char *drv, char *dir, char *name, char *ext) {

const char *end;

const char *p;

const char *s;

if (path[0] && path[1] == ':') {

if (drv) {

*drv++ = *path++;

*drv++ = *path++;

*drv = '\0';

}

} else if (drv)

*drv = '\0';

for (end = path; *end && *end != ':';)

end++;

for (p = end; p > path && *--p != '\\' && *p != '/';)

if (*p == '.') {

end = p;

break;

}

if (ext)

for (s = end; (*ext = *s++);)

ext++;

for (p = end; p > path;)

if (*--p == '\\' || *p == '/') {

p++;

break;

}

if (name) {

for (s = p; s < end;)

*name++ = *s++;

*name = '\0';

}

if (dir) {

for (s = path; s < p;)

*dir++ = *s++;

*dir = '\0';

}

}

void getCurrentFilePath(const char *filePath, char *saveFile) {

char drive[_MAX_DRIVE];

char dir[_MAX_DIR];

char fname[_MAX_FNAME];

char ext[_MAX_EXT];

splitpath(filePath, drive, dir, fname, ext);

size_t n = strlen(filePath);

memcpy(saveFile, filePath, n);

char *cur_saveFile = saveFile + (n - strlen(ext));

cur_saveFile[0] = '_';

cur_saveFile[1] = 0;

}

int GetMirrorPos(int Length, int Pos) {

if (Pos < 0)

return -Pos;

else if (Pos >= Length)

return Length + Length - Pos - 2;

else

return Pos;

}

unsigned char ClampToByte(int Value) {

if (Value < 0)

return 0;

else if (Value > 255)

return 255;

else

return (unsigned char) Value;

}

void FillLeftAndRight_Mirror(int *Array, int Length, int Radius) {

for (int X = 0; X < Radius; X++) {

Array[X] = Array[Radius + Radius - X];

Array[Radius + Length + X] = Array[Radius + Length - X - 2];

}

}

int SumOfArray(const int *Array, int Length) {

int Sum = 0;

for (int X = 0; X < Length; X++) {

Sum += Array[X];

}

return Sum;

}

void BoxBlurGrayscale(unsigned char *input, unsigned char *output, int Width, int Height, int Radius) {

if ((input == NULL) || (output == NULL)) return;

if ((Width <= 0) || (Height <= 0) || (Radius <= 0)) return;

if (Radius < 1) return;

Radius = MIN(MIN(Radius, Width - 1), Height - 1);

int SampleAmount = (2 * Radius + 1) * (2 * Radius + 1);

float Inv = 1.0f / SampleAmount;

int *ColValue = (int *) malloc((Width + Radius + Radius) * sizeof(int));

int *ColOffset = (int *) malloc((Height + Radius + Radius) * sizeof(int));

if ((ColValue == NULL) || (ColOffset == NULL)) {

if (ColValue != NULL) free(ColValue);

if (ColOffset != NULL) free(ColOffset);

return;

}

for (int Y = 0; Y < Height + Radius + Radius; Y++)

ColOffset[Y] = GetMirrorPos(Height, Y - Radius);

{

for (int Y = 0; Y < Height; Y++) {

unsigned char *scanLineOut = output + Y * Width;

if (Y == 0) {

memset(ColValue + Radius, 0, Width * sizeof(int));

for (int Z = -Radius; Z <= Radius; Z++) {

unsigned char *scanLineIn = input + ColOffset[Z + Radius] * Width;

for (int X = 0; X < Width; X++) {

ColValue[X + Radius] += scanLineIn[X];

}

}

} else {

unsigned char *RowMoveOut = input + ColOffset[Y - 1] * Width;

unsigned char *RowMoveIn = input + ColOffset[Y + Radius + Radius] * Width;

for (int X = 0; X < Width; X++) {

ColValue[X + Radius] -=

RowMoveOut[X] - RowMoveIn[X];

}

}

FillLeftAndRight_Mirror(ColValue, Width, Radius);

int LastSum = SumOfArray(ColValue, Radius * 2 + 1);

scanLineOut[0] = ClampToByte((int) (LastSum * Inv));

for (int X = 0 + 1; X < Width; X++) {

int NewSum = LastSum - ColValue[X - 1] + ColValue[X + Radius + Radius];

scanLineOut[X] = ClampToByte((int) (NewSum * Inv));

LastSum = NewSum;

}

}

}

free(ColValue);

free(ColOffset);

}

void InvertGrayscale(unsigned char *Input, unsigned char *Output, int Width, int Height, int Channels) {

if (Channels == 1) {

for (unsigned int Y = 0; Y < Height; Y++) {

unsigned char *pOutput = Output + (Y * Width);

unsigned char *pInput = Input + (Y * Width);

for (unsigned int X = 0; X < Width; X++) {

pOutput[X] = (unsigned char) (255 - pInput[X]);

}

}

} else {

for (unsigned int Y = 0; Y < Height; Y++) {

unsigned char *pOutput = Output + (Y * Width);

unsigned char *pInput = Input + (Y * Width * Channels);

for (unsigned int X = 0; X < Width; X++) {

pOutput[X] = (unsigned char) (255 - ClampToByte(

(21842 * pInput[0] + 21842 * pInput[1] + 21842 * pInput[2]) >> 16));

pInput += Channels;

}

}

}

}

void LocalColorCorrection(unsigned char *Input, unsigned char *Output, int Width, int Height, int Channels) {

unsigned char *Mask = (unsigned char *) malloc(Width * Height * sizeof(unsigned char));

if (Mask == NULL)

return;

unsigned char LocalLut[256 * 256];

for (int mask = 0; mask < 256; ++mask) {

unsigned char *pLocalLut = LocalLut + (mask << 8);

for (int pix = 0; pix < 256; ++pix) {

pLocalLut[pix] = ClampToByte(255.0f * powf(pix / 255.0f, powf(2.0f, (128.0f - mask) / 128.0f)));

}

}

InvertGrayscale(Input, Output, Width, Height, Channels);

int Radius = (MAX(Width, Height) / 512) + 1;

BoxBlurGrayscale(Output, Mask, Width, Height, Radius);

for (int Y = 0; Y < Height; Y++) {

unsigned char *pOutput = Output + (Y * Width * Channels);

unsigned char *pInput = Input + (Y * Width * Channels);

unsigned char *pMask = Mask + (Y * Width);

for (int X = 0; X < Width; X++) {

unsigned char *pLocalLut = LocalLut + (pMask[X] << 8);

for (int C = 0; C < Channels; C++) {

pOutput[C] = pLocalLut[pInput[C]];

}

pOutput += Channels;

pInput += Channels;

}

}

free(Mask);

}

int main(int argc, char **argv) {

printf("Local Color Correction demo\n ");

printf("blog:http://cpuimage.cnblogs.com/ \n ");

if (argc < 2) {

printf("usage: %s image \n ", argv[0]);

printf("eg: %s d:\\image.jpg \n ", argv[0]);

return (0);

}

char *szfile = argv[1];

getCurrentFilePath(szfile, saveFile);

int Width = 0;

int Height = 0;

int Channels = 0;

unsigned char *inputImage = NULL;

double startTime = now();

inputImage = loadImage(szfile, &Width, &Height, &Channels);

double nLoadTime = calcElapsed(startTime, now());

printf("load time: %d ms.\n ", (int) (nLoadTime * 1000));

if ((Channels != 0) && (Width != 0) && (Height != 0)) {

unsigned char *outputImg = (unsigned char *) stbi__malloc(Width * Channels * Height * sizeof(unsigned char));

if (inputImage) {

memcpy(outputImg, inputImage, (size_t) (Width * Channels * Height));

} else {

printf("load: %s fail!\n ", szfile);

}

startTime = now();

LocalColorCorrection(inputImage, outputImg, Width, Height, Channels);

double nProcessTime = calcElapsed(startTime, now());

printf("process time: %d ms.\n ", (int) (nProcessTime * 1000));

startTime = now();

saveImage("done.jpg", Width, Height, Channels, outputImg);

double nSaveTime = calcElapsed(startTime, now());

printf("save time: %d ms.\n ", (int) (nSaveTime * 1000));

if (outputImg) {

stbi_image_free(outputImg);

}

if (inputImage) {

stbi_image_free(inputImage);

}

} else {

printf("load: %s fail!\n", szfile);

}

getchar();

printf("press any key to exit. \n");

return (EXIT_SUCCESS);

}

最後你覺得我們的文章對你有幫助,歡迎關注我,可以私信我:久伴,領取學習資料,在評論下方可以關注我的學習群,你可以隨時在上面向我們提問,把你在學習前端過程中所遇到的問題發給我們。我們每天都會按時回覆大家的每一個問題,希望久伴可以伴隨你從入門到專家。


分享到:


相關文章: