Nature&Science盘点:十月材料领域重大研究进展

Nature&Science盘点:十月材料领域重大研究进展

Nature&Science盘点:十月材料领域重大研究进展

1. 模块化点击化学库用于筛选重氮试剂

Nature&Science盘点:十月材料领域重大研究进展

点击化学是一个概念,其中模块化合成用于快速发现具有所需特性的新分子。铜(i)催化的叠氮化物-炔烃环加成(CuAAC)三唑环化反应和硫(vi)氟化物交换(SuFEx)催化被广泛视为点击反应,可快速获得其产物,收率接近100%。但是,在CuAAC反应的情况下,由于叠氮化物试剂的潜在毒性和制备中涉及的爆炸危险,因此其可用性受到限制。

中科院上海有机所的Karl Barry Sharpless教授和董佳家教授,报道了添加到点击反应族中的另一种反应:由伯胺形成叠氮化物。该反应仅使用一种当量的简单重氮化物氟磺酰叠氮化物(FSO2N3),并能够以安全实用的方式在96孔板上制备1200多种叠氮化物。

这种可靠的转化是CuAAC三唑环化(目前使用最广泛的点击反应)的有力工具。该方法大大扩展了易获得的叠氮化物和1,2,3-三唑的数量,并且鉴于CuAAC反应的普遍性,该方法应在有机合成、药物化学、化学生物学和材料科学中得到应用。

文献链接: Modular click chemistry libraries for functional screens using a diazotizing reagent (Nature, 2019, DOI: 10.1038/s41586-019-1589-1)

2. PdMo双金属烯(bimetallene)用于氧还原催化

Nature&Science盘点:十月材料领域重大研究进展

通过电催化过程实现化学物质和电力的有效相互转化对于许多可再生能源计划至关重要。长期以来,氧还原反应(ORR)和氧释放反应(OER)的动力学迟缓是该领域的最大挑战之一,通常需要使用昂贵的铂族金属为基础的电催化剂来提高其活性和耐久性。合金化,表面应变和优化的配位环境的使用已导致铂基纳米晶体在酸性介质中具有很高的ORR活性。然而,由于在氢氧化物的存在下难以在铂族金属上获得最佳的氧结合强度,因此提高在碱性环境中该反应的活性仍然具有挑战性。

北京大学郭少军教授发现PdMo双金属烯(bimetallene)是碱性电解液中ORR和OER的有效和稳定的电催化剂,并显示出非常好的性能。与碱性电解液中的可逆氢电极相比,PdMo双金属片的薄层结构可实现较大的电化学活性表面积以及高原子利用率,从而在0.9伏特下对每毫克钯的ORR产生16.37安培的质量活性。该质量活性分别比市售Pt/C和Pd/C催化剂高78倍和327倍,并且在30000个潜在循环后几乎没有衰减。

密度泛函理论计算表明,合金化效应、应变效应(由于弯曲的几何形状引起)、量子尺寸效应(由于薄层的厚度引起)调节了系统的电子结构,从而优化了氧的结合。考虑到PdMo金属链的性质和结构-活性关系,其他金属链材料在能量电催化中显示出广阔的前景。

文献链接: PdMo bimetallene for oxygen reduction catalysis (Nature, 2019, DOI: 10.1038/s41586-019-1603-7)

3. 六边形平面过渡金属配合物

Nature&Science盘点:十月材料领域重大研究进展

过渡金属配合物因在催化、合成、材料科学、光物理和生物无机化学中具有重要作用而被广泛用于物理和生物科学。该研究对过渡金属配合物的理解源自Alfred Werner的认识,即它们的三维形状会影响其性能和反应性,并且分子轨道理论可牢固地支撑了形状与电子结构之间的内在联系。

尽管在该领域已有超过一个世纪的进步,但过渡金属配合物的几何形状仍仅限于一些易于理解的例子。六坐标配位过渡金属的原型几何形状为八面体和三棱柱形,尽管与理想键角和键长的偏差经常出现,但其他能替代的几何形状却极为罕见。

六边形的平面配位环境是已知的,但仅限于缩合的金属相,配位聚合物的六边形孔隙或紧密相邻的包含多个过渡金属的团簇。[Ni(PtBu)6]已经考虑过这种几何形状;然而,对分子轨道的分析表明,这种配合物最好被描述为具有三角平面几何形状的16电子产物。

英国帝国理工学院的Mark R. Crimmin教授报道了一个简单的配位化合物的分离和结构表征,其中六个配体与六边形平面排列的中央过渡金属形成化学键。该结构包含被三种氢化物和三种镁基配体包围的中心钯原子。这一发现有可能为过渡金属配合物引入其他设计原理,并涉及多个科学领域。

文献链接: A hexagonal planar transition-metal complex (Nature, 2019, DOI: 10.1038/s41586-019-1616-2)

4. 通过成分来调整高熵合金中的元素分布,结构和性能

Nature&Science盘点:十月材料领域重大研究进展

高熵合金是一类材料,其中包含五个或更多个近等原子比例的元素。它们非常规的成分和化学结构有望实现前所未有的机械性能组合。此类合金的合理设计取决于对几乎无限的组成空间中的复合物-结构-性质关系的理解。

浙江大学余倩教授、佐治亚理工大学Ting Zhu教授和加州大学伯克利分校的Robert Ritchie教授

使用原子分辨率化学映射来揭示广泛研究的面心立方CrMnFeCoNi高熵合金和新型面心立方合金CrFeCoNiPd的元素分布。在CrMnFeCoNi合金中,五个组成元素的分布相对随机且均匀。相比之下,在CrFeCoNiPd合金中,钯原子的原子尺寸和电负性与其他元素显着不同,其均质性大大降低。

这五个元素趋向于表现出更大的聚集,初始浓度波的波长小至1-3纳米。所得的纳米级交替的拉伸和压缩应变场导致对位错滑移的相当大的抵抗力。应变实验中的原位透射电子显微镜显示,从塑性变形的早期开始就存在大量的位错交叉滑移,从而导致多个滑移系统之间存在很强的位错相互作用。CrFeCoNiPd合金中的这些变形机理与Cantor合金和其他面心立方高熵合金中的明显不同,这是由于成分的明显波动和堆垛层错能量的增加而引起的,从而导致了较高的屈服强度而应变硬化和拉伸延展性丝毫不受影响。映射原子级元素分布为理解化学结构提供了机会,从而为调整组成和原子构型以获得出色的机械性能提供了基础。

文献链接: Tuning element distribution, structure and properties by composition in high-entropy alloys (Nature, 2019, DOI: 10.1038/s41586-019-1617-1)

5. 在较宽的温度范围内,基于氧化物的多层电容器具有很大的电热效应

Nature&Science盘点:十月材料领域重大研究进展

利用磁热材料和电热材料中的场驱动转变的热泵利用再生,通过相对较大的温度范围将散热器与负载分离。但是,原型的性能受到限制,因为由永磁体驱动的实际磁热工作体和由电压驱动的电热工作体显示的温度变化高达3K。

英国剑桥大学的X. Moya教授和N. D. Mathur教授以及日本村田制造公司的S. Hirose教授发现,当一阶铁电相变在290-K居里温度以上,使用29.0 V/μm电场超临界驱动时,高质量的PbSc0.5Ta0.5O3多层电容器在较宽的起始温度范围内显示出较大的电热效应。大中心区域的温度变化在室温下接近5.5 K峰值,对于跨越176 K的起始温度超过3 K(完全热化会将这些值减小到3.3 K和73 K)。

因此,PbSc0.5Ta0.5O3的多层电容器可以代替磁热冷却装置中的工作体,从而可以在不使用体积庞大且昂贵的永磁体的情况下重新利用既定的设计原理。

文献链接: Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range (Nature, 2019, DOI: 10.1038/s41586-019-1634-0)

6. 特定位点的烯丙基C-H键与铜键结合的氮中心自由基官能化

Nature&Science盘点:十月材料领域重大研究进展

选择性C-H键功能化

的方法为化学家提供了广泛而强大的合成工具箱,例如无需长时间进行新颖合成即可对铅化合物进行后期修饰。鉴于有大量可用的HAT受体以及可用于生成的自由基中间体的反应途径的多样性,通过氢原子转移(HAT)裂解sp3 C-H键特别有用。

然而,位点选择性仍然是一个巨大的挑战,特别是在具有可观性能的sp3 C-H键之间。如果中间基团可以进一步被对映选择性地俘获,这应该能够实现C-H键的高位和对映选择性官能化。

上海有机化学研究所刘国生教授与香港科技大学林振阳教授合作报道了铜(Cu)催化的复杂烯烃的定点和对映选择性烯丙基CH氰化,其中以Cu(ii)结合的氮(N)为中心的自由基在实现精确的定点HAT中起关键作用。事实证明,该方法可有效收集各种含烯烃分子,包括空间要求结构和复杂的天然产物及药物。

文献链接: Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical (Nature, 2019, DOI: 10.1038/s41586-019-1655-8)

7. 非芳香壁纳米空间

Nature&Science盘点:十月材料领域重大研究进展

在过去的几十年中,已经报道了数种笼罩着纳米孔的分子笼,主体和纳米孔材料,包括配位驱动的纳米笼。在其他应用中,这种纳米笼已广泛用于分子识别、分离、稳定化和促进异常化学反应。分子宿主内大多数报告的纳米空间都具有芳香壁,芳香壁的特性有助于确定宿主-客体的行为。然而,由于非芳香族化合物的不稳定性,尚未开发出具有被抗芳香族壁包围的纳米空间的笼子。因此,非芳香剂壁对纳米空间性质的影响仍然未知

英国剑桥大学的Jonathan R. Nitschke教授演示了在由四个具有六个相同的非芳族壁的金属离子组成的自组装笼子中,一个非芳族壁纳米空间的构造。计算表明,围绕该纳米空间的非芳族部分的磁效应彼此增强。结合的客体分子的1H核磁共振(NMR)信号证实了这一预测,由于周围环的综合非芳族脱屏蔽作用,在高达百万分之24(ppm)的化学位移值下观察到该信号。

该值与游离客体的值相差15 ppm,是迄今为止所观察到的非芳烃环境导致的最大1H NMR化学位移。因此,可以将这种笼子视为NMR移位试剂,将客体信号移动到通常的NMR频率范围以外,并为进一步探究非芳香族环境对纳米空间的影响开辟了道路。

文献链接: An antiaromatic-walled nanospace (Nature, 2019, DOI: 10.1038/s41586-019-1661-x)

8. 通过"单击"功能性肽束制备具有可控组装和刚性的聚合物

Nature&Science盘点:十月材料领域重大研究进展

生物分子的工程设计是功能强大的精密材料设计中的关键概念。生物分子具有广泛的功能和结构,包括化学识别(例如,酶底物或配体的化学识别),精致的纳米结构(由肽,蛋白质或核酸组成)以及不寻常的机械性能(如丝状强度,刚度,粘弹性和弹性)。

美国特拉华大学的Christopher J. Kloxin教授、Darrin J. Pochan教授和宾夕法尼亚大学的Jeffery G. Saven教授将物理(非共价)相互作用的计算设计与分层的“点击”共价组装相结合,以生产基于混合合成肽的聚合物。这些聚合物的纳米级单体单元是低分子量肽的同四聚体,α-螺旋束。这些捆绑的单体或“捆绑剂”可以设计为完全控制化学官能团的稳定性,大小和空间显示。

束的蛋白质状结构允许精确定位不同束缚剂末端之间的共价键,从而产生有趣且可控制的物理特性的聚合物,例如刚性棒,半柔性或扭结链以及热响应性水凝胶网络。长链的刚度可以通过仅改变连接来控制。此外,通过控制沿捆扎机外围的氨基酸序列,作者使用特定的氨基酸侧链(包括非天然的“点击”化学功能)将部分缀合为所需的样式,从而能够创建各种各样的杂化纳米材料。

文献链接: Polymers with controlled assembly and rigidity made with click-functional peptide bundles (Nature, 2019, DOI: 10.1038/s41586-019-1683-4)

9. 双回旋嵌段共聚物的软物质晶体中的介原子畸变

Nature&Science盘点:十月材料领域重大研究进展

超分子软晶体是由复杂成分的分级单元组装形成的周期性结构,并存在于各种各样的“软物质”系统中。基于通用对称性原理,此类软晶体展现出其“硬物质”原子固体对应物的许多基本特征和特性。软物质晶体的“介原子”构建基块由分子组组成,这些分子的亚单位细胞结构与超单位尺度对称性紧密耦合。迄今为止,用于表征软物质的详细局部结构,特别是用于量化多尺度可重构性影响的高保真实验技术非常有限。

美国莱斯大学的Edwin L. Thomas教授和麻省大学Gregory M. Grason教授通过应用切片和显微镜技术在较大的标本体积上重建溶液浇铸的嵌段共聚物双螺线管的微米级域形态,可以清楚地表征其超单位和亚单位细胞的形态。这种多尺度分析显示,在响应力的作用下,双螺旋软晶体和硬晶体在结构松弛方面存在定性且未得到充分认识的区别,即子单元对称性断裂的非仿射模式,在较大范围内一致地保持多单元尺寸。

受晶体生长过程中不可避免的应力的影响,相对较软的双螺线管网络的支杆长度和直径可以轻松适应变形,而角几何形状却很僵硬,即使在强烈的对称破坏变形下也能保持局部相关性。这些特征与硬质晶体的刚性长度和可弯曲角度形成鲜明对比。

文献链接: Seeing mesoatomic distortions in soft-matter crystals of a double-gyroid block copolymer (Nature, 2019, DOI: 10.1038/s-41586-019-1706-1)

10. 干双面胶带,用于粘附湿组织和设备

Nature&Science盘点:十月材料领域重大研究进展

两个干燥的表面可以通过诸如氢键,静电相互作用和范德华力相互作用的分子间作用力立即相互粘附。然而,当涉及诸如人体组织的湿表面时,这种即时粘附是有挑战性的,因为水将两个表面的分子分开,阻止了相互作用。尽管组织粘合剂在缝合方面具有潜在的优势,但是

现有的液体或水凝胶组织粘合剂存在以下局限性:粘合力弱,生物相容性低,与组织的机械匹配性差以及粘附形成缓慢。

麻省理工学院的Zhao Xuanhe教授提出一种替代性的组织粘合剂,其形式为干式双面胶带(DST),由生物聚合物(明胶或壳聚糖)和接枝N-氢琥珀酰亚胺酯的交联聚丙烯酸组合而成。这种DST的粘附机制取决于从组织表面去除界面水,从而导致与表面的快速临时交联。随后与组织表面上的胺基进行共价交联进一步改善了DST的粘附稳定性和强度。

在体外小鼠、体内大鼠和离体猪模型中,DST可以在五秒钟之内实现各种湿动态组织与工程固体之间的牢固粘附。DST可用作组织粘合剂和密封剂,以及将可穿戴和可植入设备粘附到湿组织上。

文献链接: Dry double-sided tape for adhesion of wet tissues and devices (Nature, 2019, DOI:10.1038/s41586-019-1710-5)

11. 单层Bi2Sr2CaCu2O8+δ中的高温超导

Nature&Science盘点:十月材料领域重大研究进展

尽管氧化铜高温超导体构成了复杂多样的材料族,但它们都共享分层的晶格结构。这个奇怪的事实引发了一个问题,即在隔离的单层氧化铜中是否可以存在高温超导性,如果存在,那么二维超导性和各种相关现象是否与它们的三维对应性不同。答案可能会提供有关维数在高温超导中的作用的理解。

复旦大学张远波教授和中国科学技术大学陈仙辉教授开发了一种制造工艺,该工艺可获得高温超导体Bi2Sr2CaCu2O8+δ的本征单层晶体。单层铜氧化物的最高超导转变温度与最佳掺杂体的最高一样高。

与传统的二维超导体大大降低的转变温度相比,缺乏对转变温度的尺寸效应而无法满足Mermin-Wagner定理的期望。单层Bi-2212的性能变得极为可调;作者对各种掺杂浓度下的超导性、伪能隙、电荷阶数和Mott状态的调查表明,这些相与本体中的相没有区别。

因此,单层Bi-2212显示了高温超导的所有基本物理原理。这个结果建立了单层氧化铜作为研究二维高温超导性和其他强相关现象的平台。

文献链接: High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ (Nature, 2019, DOI: 10.1038/s41586-019-1718-x)

12. 可扩展的亚微米增材制造

Nature&Science盘点:十月材料领域重大研究进展

在广泛的应用领域中,产生具有纳米级特征的任意复杂的三维结构的高通量制造技术被寄予很大的期望。基于双光子光刻(TPL)的亚微米增材制造有望填补这一空白。但是,TPL的串行逐点写入方案对于许多应用程序来说太慢了。并行化尝试没有亚微米分辨率,或者无法对复杂结构进行图案化。

美国劳伦斯利弗莫尔国家实验室通过在空间和时间上聚焦超快激光器来实现基于投影的逐层并行化,克服了这些困难。这将吞吐量提高到三个数量级,并扩展了几何设计空间。作者通过在几毫秒的时间刻度内打印宽度小于175纳米的纳米线(比横截面积大一百万倍)来证明这一点。

文献链接: Scalable submicrometer additive manufacturing (Science, 2019, DOI: 10.1126/science.aav8760)

13. 使用固体电解质直接电化学合成高达20%的纯H2O2水溶液

Nature&Science盘点:十月材料领域重大研究进展

过氧化氢(H2O2)合成通常需要大量的后反应纯化。美国莱斯大学汪淏田教授报道了一种直接电合成策略,该策略将氢气(H2)和氧气(O2)分别输送到由多孔固体电解质隔开的阳极和阴极,其中电化学生成的H+和HO2-重组形成纯H2O2水溶液。

通过优化用于双电子氧还原的功能化炭黑催化剂,作者在高达200毫安/平方厘米的电流密度下实现了对纯H2O2的> 90%的选择性,这表示H2O2生产率为3.4毫摩尔/平方厘米/小时。通过调节流过固体电解质的水流速,可以获得高达20%的各种浓度的纯H2O2溶液,并且催化剂在100小时内保持了活性和选择性。

文献链接: Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte (Science, 2019, DOI: 10.1126/science.aay1844)

14. 非常规超导体β-Bi2Pd中半量子通量的观察

Nature&Science盘点:十月材料领域重大研究进展

磁通量量化是超导体的定义特性之一。美国约翰霍普金斯大学的C. L. Chien教授报道了超导β-Bi2Pd薄膜的介观环中半整数磁通量量化的观察。半量子磁通量在超导临界温度的量子振荡中表现为pi相移。

此结果验证了β-Bi2Pd的超常规超导性,并且与自旋三重态配对对称性相符。这个发现可能对量子计算中的通量量子位有影响。

文献链接: Observation of half-quantum flux in the unconventional superconductor β-Bi2Pd (Science, 2019, DOI: 10.1126/science.aau6539)

15. 协同吸附剂分离技术,从四组分混合物中一步纯化乙烯

Nature&Science盘点:十月材料领域重大研究进展

乙烯(C2H4)的纯化是化学工业中最大的问题,目前涉及能源密集型过程,例如化学吸附(去除CO2),催化加氢(C2H2转化)和低温蒸馏(C2H6分离)。尽管先进的物理吸附剂或膜分离技术可能会降低能量输入,但一步一步去除多种杂质(尤其是痕量杂质)仍然不可行。

西北工业大学陈凯杰教授联合爱尔兰利默瑞克大学Mike Zaworotko教授、David G. Madden博士和美国南佛罗里达大学Brian Space教授,首次实现了在四组份体系下乙烯的一步高效分离制备。

利用三种高性能超微孔金属有机框架材料之间的协同作用,实现了一步分离制备。通过有效地串联三种MOF材料在单一吸附柱内,能够分别将乙炔,乙烷和二氧化碳依次高效地去除,从而在吸附柱尾端实现高纯度乙烯的一步分离收集,而且这种吸附分离工艺在常温下就能进行,有利于节约能耗。

文献链接: Synergistic sorbent separation for one-step ethylene purification from a four-component mixture (Science, 2019, DOI: 10.1126/science.aax8666)


Nature&Science盘点:十月材料领域重大研究进展

声明投稿或转载请联系GO三思([email protected]),如需转载请注明出处,并附有原文链接,谢谢!


分享到:


相關文章: