模擬電路設計,沒有你想的那麼簡單!

在電子類專業中,模擬電路是一門非常重要,並且不少人覺得很難的一門課。

工程思想

模擬電路是一門工程性質的課程,學習它的重點在於掌握其中的工程思想,同時最好能用於實踐,而不只是為了做題考試。

“工程是科學和數學的某種應用,通過這一應用,使自然界的物質和能源的特性能夠通過各種結構、機器、產品、系統和過程,是以最短的時間和精而少的人力做出高效、可靠且對人類有用的東西。於是工程的概念就產生了,並且它逐漸發展為一門獨立的學科和技藝。”

例如在模擬電路中,有個非常重要的工程思想——近似。中學物理課上,我們學的很多電路都是理想電路,導線電阻始終為0,變壓器的效率是100%,理想電壓表內阻無窮大,理想電流表內阻為0等。你可以發現,很多時候模擬電路中的計算會常常省略掉一兩個比較小的項,而且直接用等號而不是約等號。

為什麼要用近似呢?說白了就是人類科學對自然的理解還不夠全面,無法絕對精確的描述自然現象;或者是人的理解力有限,精確描述代價太大。通過近似的手段,不僅對解決問題沒有明顯的影響,而且大大簡化了步驟,節約了時間和精力。運用這種思想,人類科學取得了很多成果,也充分證明了其可靠性。

模擬電路設計,沒有你想的那麼簡單!

概要

模電本身是一個非常複雜的學科,而模電課程只是其中最基礎的東西。模擬電路(Analog Circuit)的含義是處理模擬信號的電子電路。自然界中絕大多數信號都是模擬信號,它們有連續的幅度值,比如說話時的聲音信號。模擬電路可以對這樣的信號直接處理(當然需要先轉換成電信號),比如功放能放大聲音信號,廣播電臺能將模擬的聲音信號、圖像信號進行發送。甚至可以認為,所有電路的基礎都是模擬電路(即使是數字電路,其底層原理也是基於模擬電路的)。其重要性不言而喻。

由於數字電路、可編程器件的迅速發展,體現了很多優越特性。很多電子設備都慢慢數字化,但始終還是離不開模擬電路。

目前模擬電路中最重要的器件,則非半導體器件莫屬。最基本和常用的半導體器件有二極管、三極管、場效應管和運算放大器。

二極管的作用很多,如普通二極管可用於整流,發光二極管可用於指示燈和照明,穩壓管可進行穩壓,變容二極管可用來進行信號調製等。模電課程中,涉及到二極管的部分相對比較簡單,而場效應管的很多特性類似三極管,所以常以三極管或運放為主體進行講解。

模擬電路設計,沒有你想的那麼簡單!

三極管與放大器

三極管的基本功能是放大,通過這一特性,三極管構成各種電路,體現出了很多工程思想。

三極管基本電路就是放大器,例如功放就是一個放大器,輸入的聲音很小,輸出的聲音卻很大。放大器的輸出和輸入電壓(或電流)之比稱為放大倍數,又叫做增益。

對於一個電壓來說,如果以時間為橫軸、電壓為縱軸作圖,這個圖形則為這個電壓的波形。

一個理想的放大器,希望其放大倍數是恆定值。如果功放的放大倍數不穩定,聲音就會忽大忽小,波形變化還會導致聲音發生變化,即失真。

現實總是和理想相違背。很不幸,三極管的特性並不理想,它在放大電路中工作時,放大倍數不僅受輸入電壓、電源電壓影響,而且自身發熱導致溫度變化,也會影響它的放大倍數。這實在是讓很多工程師頭疼,如果不能找到有效的方法,減少這一特性帶來的影響,三極管很難應用到實際中來。

模擬電路設計,沒有你想的那麼簡單!

負反饋基本概念

於是一些非常厲害的人找到了好方法:負反饋。什麼是負反饋呢?

“反饋是指將系統的輸出又返回到輸入端而影響輸入,從而對系統整體輸出產生作用。反饋可分為正反饋和負反饋。負反饋是使輸出起到與輸入相反的作用,使系統輸出趨於穩定。”

上面的解釋不好理解,我舉兩個例子。

玩倒立擺時,我們用手支撐起一個倒立的木棍,當木棍往某個方向傾斜時,我們通過將手移動到木棍傾斜的方向來抵消這種變化,使得木棍能在手上平衡。

高中的時候經常月考,我發現有些同學有這樣的習慣:當一次成績考得比較差的時候,就會開始好好學習,然後下次成績就上漲;而考得比較好時,接下來的一個月又會鬆懈,於是成績又會降下來,如此週而復始。

這兩個例子都充分說明,負反饋可以讓系統更穩定。

運算放大器

為了實際製造出開環增益A很大的放大器,往往要用多級三極管放大電路串聯的方式設計。由於這種高增益放大器的需求很常見,於是歷史上有人就把它們做成一個成品電路板模塊,要用的時候直接當成一個元件用就行了,非常方便。這就是最初的運算放大器,簡稱運放。

集成電路的發展,使得大量晶體管元器件集成在一個小芯片上成為可能,於是就有了今天十分常用的集成運算放大器。

“運算放大器”由於最初用於模擬計算機上進行數學運算而得名。儘管現在廣泛使用的數字計算機不再用運放進行計算操作,但名稱還是保留了下來。而今天,運放在模擬電路中發揮著十分重要的作用,也成為模電課程的重點之一。

模擬電路設計,沒有你想的那麼簡單!

運放的非理想特性

運放由三極管構成,顯然和三極管一樣,也會有很多不理想的特性。前面講的都是理想運放的特點。而實際運放,它不會完全滿足虛短虛斷特性,正常工作時輸入端需要電流流入,這個電流便被稱作輸入偏置電流。同樣運放還有輸入偏置電壓、輸入失調電壓、輸入失調電流等非理想參數。

這些非理想特性,比如輸入偏置電流雖然很小,但有時候卻會對電路造成很大影響,導致電路無法工作。因此則需要通過一些手段減小這些因素造成的影響。在實際應用中,運放的非理想特性是一個非常重要的問題。運放非理想特性的消除有很多方法,這裡不做介紹。

其他內容

模電課程的核心就是三極管和運放。圍繞這些器件,講解多種電路,包括:

放大電路的計算分析、多級放大電路、放大器的頻率特性、反饋的思想;

功率放大電路;

比較器、振盪器、積分器、微分器、波形發生等;

信號運算處理;

濾波器;

集成穩壓電源電路等。

運放和三極管的比較

在實際設計電路時,運放比三極管用的相對會多一些。因為運放的很多特性比三極管要優秀,電路設計簡單,而且往往運放的成本並不高。很多時候用三極管和運放實現同樣的效果,使用運放的成本反而更低。因為運放是將大量晶體管集成在一塊的,平均每個晶體管的製造成本非常低。

例如一個常規音頻前級放大器,一個通用運放就能搞定,成本可能是0.2元,而用三極管實現同樣的效果,可能需要10個甚至更多三極管,成本或許要0.5元,並且設計時所花費的人力成本遠比運放方案高。

當然三極管也有其優勢。在一些非常簡單的電路中,並不嚴格要求放大倍數的穩定性,一兩個三極管就能完成任務,往往會用三極管以節省成本。另外在一些比較極端的條件下,比如工作在高頻率、大功率的環境下(例如射頻信號發射電路),設計良好的三極管電路的性能會比運放效果好很多,或者成本低很多,甚至有些情況下只有直接使用晶體管才能完成,這時就需要使用三極管來搭建電路了。


END

電課程的介紹到此為止。但是我想說的是,模擬電路是一門非常複雜的學科,涉及的知識遠不止書上的那些。書上都是按照工作原理大致介紹,簡化了很多難以理解但實際中必須考慮的問題,因此實際電路和書上的差距非常之大。比如模電書中用運放搭建的三角波發生器,用於實際電路十有八九不能工作。不過實際電路的主要原理和書中描述是一致的。因此設計模擬電路往往需要大量的經驗,有很多東西甚至難以解釋無法計算得出。


分享到:


相關文章: