让你更加了解网络结构的组成,详解交换机的发展简史

交换机前身:集线器

说到交换机,不得不先说一下和交换机外观非常类似的集线器。

集线器(Hub)工作于OSI(开放系统互联参考模型)参考模型第一层,即“物理层”,其主要功能是对接收到的信号进行再生整形放大,以扩大网络的传输距离,同时把所有节点集中在以它为中心的节点上。

由于集线器收到报文会向所有端口转发,同时只能传输一个数据帧,通过集线器相连的所有主机处于同一个冲突域中,因此,当有多台主机同时发送数据报文时,大量的冲突将导致性能显著下降,这也意味着集线器所有端口都要共享同一带宽,以集线器为核心构建的网络是共享式以太网的典型代表。

严格来说,集线器不属于狭义上的交换机范畴,但由于集线器在网络发展初期具有举足轻重的作用,在很长时间内占据着目前接入交换机的应用位置,因此往往也被看成是(第)一层交换机。

让你更加了解网络结构的组成,详解交换机的发展简史

二层交换机

交换机是在多端口网桥的基础上逐步发展起来的,Kalpana公司在1989年发明了第一台以太网交换机,EtherSwitch EPS-700,对外提供7个固定端口。

最初的交换机是完全符合OSI定义的层次模型的,也就是说工作在OSI模型的第二层(数据链路层),因此也被称为二层交换机。二层交换机识别数据帧中的MAC地址信息,主要根据MAC地址选择转发端口,算法相对简单,便于ASIC实现,因此转发性能极高。交换机的出现,解决了集线器的冲突域问题,使得以太网从“共享式“步入了“交换式”时代,大大提高了局域网的性能。

让你更加了解网络结构的组成,详解交换机的发展简史

三层交换机

在引入VLAN之前,交换机只能隔离冲突域,而不能分割广播域。然而在TCP/IP协议栈进行通信时,广播或组播类型的协议报文会被广泛使用,如ARP/RIP/DHCP等。如果整个网络只有一个广播域,一旦发出广播报文,就会传遍整个网络,这样不仅会影响到网络带宽,而且还会对网络中的主机带来额外的负担。

随着时间的推移,网络由最初的军事、科研用途逐渐融入人们的日常生活,网络用户数急速提升,广播域带来的问题愈发明显。虽然VLAN在交换机上能够实现广播域的隔离,但VLAN之间的转发还是要通过路由器来完成。相对于交换机而言,路由器不仅价格昂贵,而且性能较差,无法满足大量用户对大带宽的需求,人们呼唤能工作在ISO模型第三层的交换机,在满足客户需求的同时继续保持“高性能、低成本”的传统优势。

让你更加了解网络结构的组成,详解交换机的发展简史

三层交换机的发展经历了一个小插曲。由于早期的ASIC芯片无法独立完成三层转发的完整功能,2002年左右出现的“三层交换机”采用了广为流传的“一次路由多次交换”技术,逻辑上可以看成在原有二层交换机之上“扣了一个三层的帽子”,因此对外表现为“弱三层、强二层”的特点。但随着芯片技术的发展,很快ASIC就支持了硬件路由查找功能,真正实现了全硬件三层转发的交换机,因此最终“三层交换机”只是昙花一现,很快被全硬件三层转发的交换机所取代。为了避免与前期的“三层交换机”相混淆,支持全硬件三层转发的交换机往往也称为路由交换机。

让你更加了解网络结构的组成,详解交换机的发展简史

多业务交换机

近年来,尤其是万兆以太网出现后,语音、视频、游戏等高带宽业务逐步开始普及,这些业务的开展和部署对网络设备的要求已经不仅仅是完成数据的连通性,还提出了一些新的需求,比如安全性、可靠性、QoS等。同时为了降低组网成本,简化管理维护,网络设备的功能出现了融合的趋势,这就催生了交换机支持多层转发,融合增值业务的能力。

由于ASIC芯片能力的限制,当前的多业务交换机采用了基本二、三层业务“叠加”上层增值业务的混合模型,在组网应用时对外呈现为多台物理设备,本质上是多台设备安装在同一机框内,没有实现真正的融合。因此,这种混合模型的多业务交换机距离客户心目中期望的真正多业务交换机还有一定差距。


分享到:


相關文章: