分布式锁实现大型连续剧(二):Zookeeper

分布式锁实现大型连续剧(二):Zookeeper


前言

紧跟上文的:分布式锁实现(一):Redis ,这篇我们用Zookeeper来设计和实现分布式锁,并且研究下开源客户端工具Curator的分布式锁源码

设计实现

一、基本算法

1.在某父节点下创建临时有序节点

2.判断创建的节点是否是当前父节点下所有子节点中序号最小的

3.是序号最小的成功获取锁,否则监听比自己小的那个节点,进行watch,当该节点被删除的时候通知当前节点,重新获取锁

4.解锁的时候删除当前节点

二、关键点

临时有序节点

实现Zookeeper分布式锁关键就在于其[临时有序节点]的特性,在Zookeeper中有四种节点

1.PERSISTENT 持久,若不手动删除就永久存在

2.PERSISTENT_SEQUENTIAL 持久有序节点,zookeeper会为节点编号(保证有序)

3.EPHEMERAL 临时,一个客户端会话断开后会自动删除

4.EPHEMERAL_SEQUENTIAL 临时有序节点,zookeeper会为节点编号(保证有序)

三、代码实现

我们基于ZkClient这个客户端来实现,当然也可以用原生Zookeeper API,大致是一样的

坐标如下:

com.101tec

zkclient

0.2

代码如下:

public class MyDistributedLock {

private ZkClient zkClient;

private String name;

private String currentLockPath;

private CountDownLatch countDownLatch;

private static final String PARENT_LOCK_PATH = "/distribute_lock";

public MyDistributedLock(ZkClient zkClient, String name) {

this.zkClient = zkClient;

this.name = name;

}

//加锁

public void lock() {

//判断父节点是否存在,不存在就创建

if (!zkClient.exists(PARENT_LOCK_PATH)) {

try {

//多个线程只会成功建立一次

zkClient.createPersistent(PARENT_LOCK_PATH);

} catch (Exception ignored) {

}

}

//创建当前目录下的临时有序节点

currentLockPath = zkClient.createEphemeralSequential(PARENT_LOCK_PATH + "/", System.currentTimeMillis());

//校验是否最小节点

checkMinNode(currentLockPath);

}

//解锁

public void unlock() {

System.out.println("delete : " + currentLockPath);

zkClient.delete(currentLockPath);

}

private boolean checkMinNode(String lockPath) {

//获取当前目录下所有子节点

List children = zkClient.getChildren(PARENT_LOCK_PATH);

Collections.sort(children);

int index = children.indexOf(lockPath.substring(PARENT_LOCK_PATH.length() + 1));

if (index == 0) {

System.out.println(name + ":success");

if (countDownLatch != null) {

countDownLatch.countDown();

}

return true;

} else {

String waitPath = PARENT_LOCK_PATH + "/" + children.get(index - 1);

//等待前一个节点释放的监听

waitForLock(waitPath);

return false;

}

}

private void waitForLock(String prev) {

System.out.println(name + " current path :" + currentLockPath + ":fail add listener" + " wait path :" + prev);

countDownLatch = new CountDownLatch(1);

zkClient.subscribeDataChanges(prev, new IZkDataListener() {

@Override

public void handleDataChange(String s, Object o) throws Exception {

}

@Override

public void handleDataDeleted(String s) throws Exception {

System.out.println("prev node is done");

checkMinNode(currentLockPath);

}

});

if (!zkClient.exists(prev)) {

return;

}

try {

countDownLatch.await();

} catch (InterruptedException e) {

e.printStackTrace();

}

countDownLatch = null;

}

}

加锁

  1. zkClient.exists先判断父节点是否存在,不存在就创建,zookeeper可以保证只会创建成功一次
  2. 在当前目录下zkClient.createEphemeralSequential创建临时有序节点,再判断当前目录下此节点是否为序号最小的,如果是,成功获取锁,否则的话拿比自己小的节点,并做监听
  3. waitForLock等待比自己小的节点,subscribeDataChanges监听一个节点的变化,handleDataDeleted里面再次做checkMinNode的判断
  4. 监听完毕后,再判断一次此节点是否存在,因为在监听的过程中有可能之前小的那个节点重新释放了锁,如果之前节点不存在的话,无需在这里等待,这里的等待是通过countDownLatch实现的

解锁

解锁就是通过zkClient的delete删除当前节点

测试用例

通过启动多个线程来测试lock、unlock的过程,查看是否有序

public class MyDistributedLockTest {

public static void main(String[] args) {

ZkClient zk = new ZkClient("127.0.0.1:2181", 5 * 10000);

for (int i = 0; i < 20; i++) {

String name = "thread" + i;

Thread thread = new Thread(() -> {

MyDistributedLock myDistributedLock = new MyDistributedLock(zk, name);

myDistributedLock.lock();

// try {

// Thread.sleep(1 * 1000);

// } catch (InterruptedException e) {

// e.printStackTrace();

// }

myDistributedLock.unlock();

});

thread.start();

}

}

}

执行结果如下,多线程情况下lock/unlock和监听一切正常:

thread1 current path :/distribute_lock2/0000000007:fail add listener wait path :/distribute_lock2/0000000006

thread6 current path :/distribute_lock2/0000000006:fail add listener wait path :/distribute_lock2/0000000005

thread3:success

delete : /distribute_lock2/0000000000

thread2 current path :/distribute_lock2/0000000005:fail add listener wait path :/distribute_lock2/0000000004

thread7 current path :/distribute_lock2/0000000004:fail add listener wait path :/distribute_lock2/0000000003

thread9 current path :/distribute_lock2/0000000009:fail add listener wait path :/distribute_lock2/0000000008

thread5 current path :/distribute_lock2/0000000008:fail add listener wait path :/distribute_lock2/0000000007

thread0 current path :/distribute_lock2/0000000001:fail add listener wait path :/distribute_lock2/0000000000

thread8 current path :/distribute_lock2/0000000002:fail add listener wait path :/distribute_lock2/0000000001

thread4 current path :/distribute_lock2/0000000003:fail add listener wait path :/distribute_lock2/0000000002

delete : /distribute_lock2/0000000001

prev node is done

thread8:success

delete : /distribute_lock2/0000000002

prev node is done

thread4:success

delete : /distribute_lock2/0000000003

prev node is done

thread7:success

delete : /distribute_lock2/0000000004

prev node is done

thread2:success

delete : /distribute_lock2/0000000005

prev node is done

thread6:success

delete : /distribute_lock2/0000000006

prev node is done

thread1:success

delete : /distribute_lock2/0000000007

prev node is done

thread5:success

delete : /distribute_lock2/0000000008

prev node is done

thread9:success

delete : /distribute_lock2/0000000009

Curator源码分析

RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3); CuratorFramework client = CuratorFrameworkFactory.newClient("127.0.0.1:2181", retryPolicy); client.start(); InterProcessMutex lock2 = new InterProcessMutex(client, "/test"); try { lock.acquire(); //业务 } catch (Exception e) { e.printStackTrace(); } finally { lock.release(); }

  1. CuratorFrameworkFactory.newClient获取zookeeper的客户端,retryPolicy指定重试策略,开启客户端
  2. Curator本身提供了多种锁的实现,这里我们以InterProcessMutex可重入锁为例, lock.acquire()方法获取锁,lock.release()来释放锁,acquire方法也提供了重载的等待时间参数

二、源码分析

加锁

acquire内部就直接internalLock方法,传了-1的等待时间

public void acquire() throws Exception {

if(!this.internalLock(-1L, (TimeUnit)null)) {

throw new IOException("Lost connection while trying to acquire lock: " + this.basePath);

}

}

internalLock方法首先判断是否是重入锁,通过ConcurrentMap维护线程和一个原子计数器,非重入锁的话,再通过attemptLock去获取锁

private boolean internalLock(long time, TimeUnit unit) throws Exception

{

/*

Note on concurrency: a given lockData instance

can be only acted on by a single thread so locking isn't necessary

*/

Thread currentThread = Thread.currentThread();

LockData lockData = threadData.get(currentThread);

if ( lockData != null )

{

// re-entering

lockData.lockCount.incrementAndGet();

return true;

}

String lockPath = internals.attemptLock(time, unit, getLockNodeBytes());

if ( lockPath != null )

{

LockData newLockData = new LockData(currentThread, lockPath);

threadData.put(currentThread, newLockData);

return true;

}

return false;

}

String attemptLock(long time, TimeUnit unit, byte[] lockNodeBytes) throws Exception

{

final long startMillis = System.currentTimeMillis();

final Long millisToWait = (unit != null) ? unit.toMillis(time) : null;

final byte[] localLockNodeBytes = (revocable.get() != null) ? new byte[0] : lockNodeBytes;

int retryCount = 0;

String ourPath = null;

boolean hasTheLock = false;

boolean isDone = false;

while ( !isDone )

{

isDone = true;

try

{

ourPath = driver.createsTheLock(client, path, localLockNodeBytes);

hasTheLock = internalLockLoop(startMillis, millisToWait, ourPath);

}

catch ( KeeperException.NoNodeException e )

{

// gets thrown by StandardLockInternalsDriver when it can't find the lock node

// this can happen when the session expires, etc. So, if the retry allows, just try it all again

if ( client.getZookeeperClient().getRetryPolicy().allowRetry(retryCount++, System.currentTimeMillis() - startMillis, RetryLoop.getDefaultRetrySleeper()) )

{

isDone = false;

}

else

{

throw e;

}

}

}

if ( hasTheLock )

{

return ourPath;

}

return null;

}

createsTheLock就是调用curator封装的api去创建临时有序节点

public String createsTheLock(CuratorFramework client, String path, byte[] lockNodeBytes) throws Exception

{

String ourPath;

if ( lockNodeBytes != null )

{

ourPath = client.create().creatingParentContainersIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath(path, lockNodeBytes);

}

else

{

ourPath = client.create().creatingParentContainersIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath(path);

}

return ourPath;

}

internalLockLoop锁判断,内部就是driver.getsTheLock去判断是否是当前目录下最小节点,如果是的话,返回获取锁成功,否则的话对previousSequencePath进行监听,监听动作完成后再对等待时间进行重新判断

private boolean internalLockLoop(long startMillis, Long millisToWait, String ourPath) throws Exception

{

boolean haveTheLock = false;

boolean doDelete = false;

try

{

if ( revocable.get() != null )

{

client.getData().usingWatcher(revocableWatcher).forPath(ourPath);

}

while ( (client.getState() == CuratorFrameworkState.STARTED) && !haveTheLock )

{

List children = getSortedChildren();

String sequenceNodeName = ourPath.substring(basePath.length() + 1); // +1 to include the slash

PredicateResults predicateResults = driver.getsTheLock(client, children, sequenceNodeName, maxLeases);

if ( predicateResults.getsTheLock() )

{

haveTheLock = true;

}

else

{

String previousSequencePath = basePath + "/" + predicateResults.getPathToWatch();

synchronized(this)

{

try

{

// use getData() instead of exists() to avoid leaving unneeded watchers which is a type of resource leak

client.getData().usingWatcher(watcher).forPath(previousSequencePath);

if ( millisToWait != null )

{

millisToWait -= (System.currentTimeMillis() - startMillis);

startMillis = System.currentTimeMillis();

if ( millisToWait <= 0 )

{

doDelete = true; // timed out - delete our node

break;

}

wait(millisToWait);

}

else

{

wait();

}

}

catch ( KeeperException.NoNodeException e )

{

// it has been deleted (i.e. lock released). Try to acquire again

}

}

}

}

}

catch ( Exception e )

{

ThreadUtils.checkInterrupted(e);

doDelete = true;

throw e;

}

finally

{

if ( doDelete )

{

deleteOurPath(ourPath);

}

}

return haveTheLock;

}

解锁

release代码相对来说比较简单,就是先判断map里面是否存在当前线程的锁计数,不存在抛出异常,存在的话,进行原子减一操作,releaseLock内部就是删除节点操作,小于0的时候,从map里面移除

public void release() throws Exception

{

/*

Note on concurrency: a given lockData instance

can be only acted on by a single thread so locking isn't necessary

*/

Thread currentThread = Thread.currentThread();

LockData lockData = threadData.get(currentThread);

if ( lockData == null )

{

throw new IllegalMonitorStateException("You do not own the lock: " + basePath);

}

int newLockCount = lockData.lockCount.decrementAndGet();

if ( newLockCount > 0 )

{

return;

}

if ( newLockCount < 0 )

{

throw new IllegalMonitorStateException("Lock count has gone negative for lock: " + basePath);

}

try

{

internals.releaseLock(lockData.lockPath);

}

finally

{

threadData.remove(currentThread);

}

}

复制代码

后记

分布式锁的实现目前主流比较常用的实现就是Redis和Zookeeper了,相比较自己的实现,Redission和Curator的设计实现更为优秀,也更值得我们借鉴和学习

千里之行,积于跬步;万里之船,成于罗盘,共勉。


分享到:


相關文章: