基于facenet的实时人脸检测

参考自
https://github.com/shanren7/real_time_face_recognition

本人的项目代码
https://github.com/zouzhen/real_time_face_recognize

虽然名字相同,但里面的内容可是有很大的不同

由于不能满足当前的tensorflow版本,以及未能满足设计要求,进行了优化与重新设计

基于facenet的实时人脸检测

工作环境

python 3.6tensorflow==1.9.0(可运行在无gpu版)

代码结构

real_time_face_recognize

|—— model_check_point(保存人脸识别模型)|—— models(储存了facenet采用的神经网络模型)|—— detect_face.py(主要实现人脸的检测,同时返回可能的人脸框)|—— facenet.py(这里存储了facenet的主要函数)|—— real_time_face_recognize.py(实现了实时人脸检测)

运行

从 https://github.com/davidsandberg/facenet 中下载预训练的分类模型,放在model_check_point下使用pip install requirements.txt安装需要的包,建议在virtualenv环境安装在目录下新建picture文件,将需要识别的人的图片放入其中,每人放入一张清晰的图片即可执行python real_time_face_recognize.py